SafeAdapt

The SafeAdapt Project

The promising advent of fully electric vehicles also means a shift towards fully electrical control of the existing and new vehicle functions. In particular, critical X-by-wire functions require sophisticated redundancy solutions. As a result, the overall Electric/Electronic (E/E) architecture of a vehicle is becoming even more complex and costly.

The main idea of SafeAdapt is to develop novel architecture concepts based on adaptation to address the needs of a new E/E architecture for FEVs regarding safety, reliability and cost-efficiency. This will reduce the complexity of the system and the interactions by generic, system-wide fault and adaptation handling. It also enables extended reliability despite failures, improvements of active safety, and optimized resources. This is especially important for increasing reliability and efficiency regarding energy consumption, costs and design simplicity.

SafeAdapt follows a holistic approach for building adaptable systems in safety-critical environments that comprises methods, tools, and building blocks for safe adaptation. This also includes certification support of safety-critical systems in the e-vehicle domain. The technical approach builds on a SafeAdapt Platform Core, encapsulating the basic adaptation mechanisms for re-allocating and updating functionalities in the networked, automotive control systems. This will be the basis for an interoperable and standardized solution for adaptation and fault handling in AUTOSAR. The SafeAdapt approach also considers functional safety with respect to the ISO 26262 standard.

SafeAdapt provides an integrated approach for engineering such adaptive, complex and safe systems, ranging from tool chain support, reference architectures, modelling of system design and networking, up to early validation and verification. For realistic validation of the adaptation and redundancy concepts, an actual vehicle prototype with different and partly redundant applications is developed.

The research leading to these results has received funding from the European Union Seventh Framework Programme ([FP7/2007-2013] [FP7/2007-2011]) under grant agreement n° 608945.