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Executive Summary 

Today´s electronic control systems are prone to new types of failures that do not have effect on 
purely mechanical and hydraulic systems. More precisely, computation hardware typically fails 
more frequently and less gracefully than their mechanical counterparts, as for instance, evolving 
and eminent failures are not perceivable through degradation in quality, but rather occur abruptly. 
To establish an effective protection against these risks, safety-critical electronic control systems do 
not only require duplicate installation of identical components, but in fact necessitate sophisticated 
forms of redundancy and isolation techniques to avoid systematic errors spreading throughout the 
system. Furthermore, safety measures are defined to avoid or control systematic failures and to 
detect or control random hardware failures, or mitigate their harmful effects. In addition, dependent 
failures are addressed by means of physical separation or design diversity. Adaptation poses as a 
viable solution to increase the reliability of safety-critical applications without relying on mechanical 
fall-back solutions. Obviously, safety issues and certification demands cannot be neglected when 
adaptation and dynamic function reallocation are to be applied to future Fully Electric Vehicles 
(FEVs.) 

The static nature of best practice automotive architectures is also reflected by the ISO26262 
standard, which provides limited guidance on leveraging adaptive behaviour with the goal to 
improve safety. Motivated by this non-exploited possibility to improve safety through dynamic and 
adaptive architectures, this paper sets out to identify and discuss future safety concerns and their 
relation to current certification practise. 

Since the introduction of ISO the 26262 standard in 2011, functional safety assessment in the 
automotive domain is governed by an industry specific guideline, thus replacing the general IEC 
61508 standard. Regarded more closely, adherence to the ISO 26262 standard with respect to the 
development process for FEV is a challenging assignment, as for instance, no previous experience 
in defining runtime hazards exists, which in turn is, however, indispensable for defining sound 
countermeasures. Adaptive systems could be defined as those that are able to modify its 
behaviour at operating time depending on already defining conditions that trigger this change.  The 
new state of the system after the adaptation could include new hazards also called run time 
hazards, which are not avoided, detected or sufficiently mitigated.  

This document aims at answering to two different questions. Firstly, the challenges of applying ISO 
26262 to the novel architecture are identified and new interpretations and means for compliance to 
the standard are proposed. Secondly, it is explained how the developed adaptation concept of the 
SafeAdapt project identifies and mitigates the effects of possible adaptation hazards. 
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1 Introduction 

The promising advent of fully electric vehicles also means a shift towards fully electrical control of 
the vehicle functions. In particular, critical X-by-Wire functions require solutions with sophisticated 
redundancy. As a result, the overall Electric/Electronic (E/E) architecture of a vehicle is becoming 
more overly complex and costly. 

The main concept behind SafeAdapt (Safe Adaptive Software for Fully Electric Vehicles) is to 
develop novel E/E architecture based on adaptation to achieve safety, reliability, and cost-
efficiency in future FEVs. Thereby, the system complexity will be reduced due to generic and 
system-wide fault handling and change management mechanisms. Furthermore, and despite 
failures, the reliability is extended, active safety is improved, and resource utilisation is optimised. 
This is especially important for increasing reliability and efficiency regarding energy consumption, 
cost, and design simplicity. 

SafeAdapt follows a holistic approach for building adaptive systems in safety-critical environments 
by comprising methods and tools. The technical approach builds on a Safe Adaptation Platform 
Core (SAPC), encapsulating the basic adaptation mechanisms for re-allocating and updating 
functionalities in distributed automotive control systems. Although SafeAdapt does not endeavour 
to certify developed software or hardware, the certification process exceeds the scope of the 
project. However, the SafeAdapt approach considers functional safety with respect to the ISO 
26262 standard to support potential certification issues of safety-critical e-vehicle systems. 

SafeAdapt provides an integrated approach for engineering such adaptive, complex and safe 
systems, ranging from tool chain support, reference architectures, modelling of system design and 
networking, up to early validation and verification. For realistic validation of the adaptation and 
redundancy concepts, an actual vehicle prototype with different and partially redundant 
applications is developed. 

1.1 Document Scope 

The purpose of this document is to specify the safety goals for the SafeAdapt solution, which is an 
architecture that is capable of changing dynamically in response to different situations that can be 
reached when some vehicle functions are not working properly or on decisions triggered by energy 
levels that can end up in dangerous situations. 

We also outline what kind of argumentation is required to provide evidence that these safety goals 
are fulfilled.  

Moreover, this deliverable includes a “quasi guideline” explaining which part of the certification 
need to be newly treated / implemented and which can be omitted due to the novel approach. 

1.2 Document Outline 

The remainder of the report is structured as follows: 

 Section 2: Describes the outputs of the hazards analysis and risk assessment done at 
vehicle level of the functions selected to be included on the SafeAdapt demonstrators. 
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 Section 3: Describes the challenges identified in order to apply the ISO 26262 functional 
safety standard to the self-adaptive systems such as SafeAdapt is proposing. 

 Section 4: Includes a brief description of the functionality of the Safe Adaptation Platform 
Core.  

 Section 5: Describes the process followed to identify the safety goals derived from the 
adaptation hazards and how they are avoided or mitigated by applying the safety concept 
design. 

 Section 6: Includes proposals to ISO 26262 in order to maintain the same objectives but 
applying them to the self-adaptive systems. 
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2 Outputs of the vehicle hazard analysis 

On the deliverable D2.1 an excerpt of the Hazard Analysis and Risk Assessment work was 
included which was part of the analysis done to define the project use cases. 

An abstract of that analysis defining the vehicle functions, hazards effect and ASIL assigned in 
Table 1. 

Function 
Hazard 

Potential Effect ASIL 
ID Description 

ACC ACC1 

The driver may lose control of the 
vehicle if sudden unintended 
acceleration occurs. Departure of the 
lane may lead to accidents with road 
users/objects. 

ACC-acceleration > 2 m/s^2 B 

ACC ACC2 
Life-threatening injuries, possible rear-
end collision with vehicle in front. 

Without driver intervention the vehicle 
would reach max. speed 

B 

ACC ACC3 
Possible rear-end collision with vehicle 
in front. 

It takes too long to reach the target 
speed 

QM 

ACC ACC4 
Another car is following the ACC-
vehicle. Rear end collision with the 
ACC-vehicle. 

Worst Case: unintended deceleration 
until standstill due to brake intervention 

C 

ACC ACC5 

Oncoming traffic or obstacles on the 
side, driving in a curve with max. speed, 
vehicle close to destabilisation. 
Destabilisation of the vehicle, departure 
of the lane, collision with objects. 

Unintended to strong deceleration of 
the vehicle 

B 

ACC ACC6 
Vehicle approaching pedestrian 
crossing with extreme low speed, driver 
not pressing brake- or clutch pedal.  

Unintended acceleration A 

ACC ACC7 
Driving backwards, persons close 
behind the vehicle. 

Unintended acceleration, starting from 
standstill 

A 

ACC ACC8 

City traffic, traffic jam, pedestrian forces 
his way on the pedestrian crossing 
between the ACC vehicle and the car in 
front. 

Unintended driveway of the vehicle A 

AEB AEB1 

City traffic, pedestrian in front of the car 
crossing the road, daytime, and car 
does not brake automatically. Possible 
collision. 

Vehicle will not brake automatically A 

AEB AEB2 
Destabilisation of the vehicle, departure 
of the lane, collision with objects. 

Worst Case: unintended deceleration 
until standstill due to brake intervention 

C 

SA SA1 
The driver may lose control of the 
vehicle if follows sleep. 

Worst Case: The driver is not alerted 
and fall sleep 

A 

SA SA2 
The driver may lose control of the 
vehicle if alert is too loud. 

Driver is annoyed by continuous alert QM 

BMS BMS1 
Driver and passengers can be damaged 
by a fire or explosion. 

Overcharging of Battery- degassing 
fire, explosion (depending on cell 
chemistry) 

D 

BMS BMS2 
Drivers, passengers, pedestrian can be 
damaged by a fire or explosion.. 

Overcharging of Battery- degassing 
fire, explosion (depending on cell 
chemistry) 

C 
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BMS BMS3 
Drivers, passengers, pedestrian can be 
damaged by a fire or explosion. 

Overcharging of Battery- degassing 
fire, explosion(depending on cell 
chemistry), local heating due to 
overcurrent 

C 

MIW MIW1 
The driver may (partial) lose vehicle 
control. 

  C 

SBW SBW1 
The driver may (partial) lose vehicle 
control. 

  D 

BBW BBW1 
The driver may (partial) lose vehicle 
control. 

  D 

BBW BBW3 The driver will lose vehicle control. Vehicle can't stop C 
Non-

Driving 
function 

NDF 
Passenger and the person charging the 
battery could be injured. 

Overheating of battery-> degassing, 
fire, explosion(depending on cell 
chemistry), aging 

C 

Table 1 Vehicle hazard analysis 

For each of the applications different particularities appear but for all of them, the intention for the 
safety goal definition is to avoid malfunction within the vehicle. As a result of this hazard analysis 
the following common safety state has been identified: 

In case of failure detection, adaptation is triggered.  

It has been decided to follow a common strategy when a failure is detected which takes advantage 
of the adaptation capabilities so as to define a new configuration where the failure does no impact 
on the vehicle behaviour.  
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3 Challenges for Compliance with ISO 26262  

ISO 26262 [ISO26262 2011] is a quite novel standard that appears on November 2011, which can 
be described as an objective standard. It does include quite innovative concepts from the 
assurance point of view such as model based engineering or the application of formal methods for 
validation and verification. Nevertheless, it does not take into account adaptive systems or 
autonomously operating.  

In order to detect which are the parts of the standard which are more challenging to be fulfilled on 
adaptive systems various brainstorming meetings have been conducted in the context of 
SafeAdapt project where different points of ISO 26262 were analysed in order to apply them to a 
specific adaptive architecture. As a result of the brainstorming the following main areas have been 
identified where the application might result difficult: 

• Adaptation as a safety mechanism or as functionality 
• Hazard Analysis and Risk Assessment (HARA) 
• Automotive Safety Integrity Level (ASIL) decomposition 
• Safety Analysis 
• HW-SW Interface 
• Requirement Management 
• Verification and Validation (V&V) 
• Maintenance 
• Safety Element out of Context (SEooC) 

After defining this list, we have produced a survey between different practitioners (24 replies) either 
experts on adaptive systems or experts on safety and standards compliance or both. The objective 
of this survey was to validate and enhance the first findings. 

 

Fig. 1 Statistics of experiences on adaptive systems and ISO 26262 

3.1 Adaptation as a safety mechanism or as functionality 

This has been a very controversial point when analysing the feasibility of applying ISO 26262 to 
adaptive systems. The first challenge we came across is the definition of Adaptation. In [Whittle et 
al 2009] Whittle defines Self-adaptive systems as those which have the capability to autonomously 
modify their behaviour at run-time in response to changes in their environment. Whittle presents 
adaptation as a general feature that deals with the availability rather than safety. However, in 
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[Gudemann et al 2006], adaptation is presented in a way where the systems takes advantage to 
make the function of the system available again. Gudemann indicates that “if the hazard occurs 
and the reconfiguration succeeds, then the system will come back into working mode some time 
later. So the occurrence of the hazard is only ‘critical’ if the system cannot repair itself anymore. 
Intuitively the hazard is only critical, if the system cannot repair itself by reconfiguration. In other 
words: if the self-x capabilities may not compensate the failures any more”. In this case, the 
adaptation is seen as a system level safety mechanism to reach fail-operational behaviour.  

In SafeAdapt project adaptation is seen with both approaches. On the one hand, SafeAdapt aims 
to develop novel architecture concepts based on adaptation so as to be able to handle failures in 
safety-relevant systems by adaptation/reconfiguration, especially failures where current systems 
do not degrade gracefully. On the other hand, the Safe Adapt Platform Core (SAPC) is also meant 
to optimize the energy consumption in automotive E/E architectures. This second purpose it is not 
directly linked with the avoidance of a hazard, it just deals with the modification of the behaviour so 
as to make it more efficiently. 

In the conducted survey, similar results were obtained as it can be seen in Fig. 2: safety 
mechanism (prevent hazards by adaptation) or as a common functionality (increase the efficiency). 

 

Fig. 2 Results for the question about adaptation category 

When we think about how to apply ISO 26262, the main interest is the functional safety.  In this 
context, adaptation can be used to ensure the overall safety as a system level safety mechanism 
so as to avoid possible hazards. This would apply for adaptation used as a common functionality 
when it is used to increase the efficiency of the vehicle’s energy consumption. However, if 
adaptation for efficiency reasons produces the introduction of new hazards, then ISO26262 
compliance should be ensured. 
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3.2 Hazard Analysis and Risk Assessment (HARA) 

According to ISO 26262 [ISO 26262-3:7.4.1.2] the item without internal safety mechanisms shall 
be evaluated during hazard analysis and risk assessment. This means that if a vehicle subsystem 
is considered, we should analyse it alone and detect the possible hazards it could create and 
thereafter define the adaptation as a safety mechanism put in order to avoid specific hazards.  

Safety mechanisms of the item that are intended to be implemented or that have already been 
implemented are incorporated as part of the functional safety concept. Afterwards, safety 
mechanisms are refined, specified in detail and allocated to hardware and software at Technical 
Safety Requirements and System Design Level. 

However, if adaptation is done systematically across the vehicle in order to avoid hazards derived 
from malfunctions then, adaptation could also lead to new hazards not considered on the previous 
hazard analysis. 

During the survey 79% of the replies indicate the need of a change in the HARA so as to include 
adaptation on the analysis. 

 

Fig. 3 Survey’s answers to the question about HARA modification 

In [Gudemann et al 2006] Gudemann says:” Standard methods for reliability analysis like FMEA, 
FTA and DCCA are not directly applicable, because they try to find only cause-consequence 
relationships between component failures and system failures.” 

3.3 ASIL decomposition  

ASIL (Automotive safety Integrity Level) is defined as one of four levels to specify item’s or 
element’s necessary requirements of the ISO 26262 safety measures to apply for avoiding an 
unreasonable residual risk with D representing the most stringent and A the least stringent level 
[ISO26262 2011]. 

As a result of the survey about this issue, 83% of the respondents affirmed that ASIL 
decomposition should take adaptation into consideration.  
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Fig. 4 Survey’s answer about ASIL decomposition 

Adaptation implies a harmonized mean for error handling. Failures of different system’s elements 
are handled in a systematic and common way offering a better control of the failure effect. It 
decreases the options of the failure to produce a real hazard.  

Related to ASIL decomposition we also asked in the survey about whether we should limit the 
applications to be adapted based on their criticality. 79% of the answers indicated that adaptation 
might be used to adapt ASIL D applications.  

 

Fig. 5 Survey’s answer about ASIL allocation to adaptation 

The implication of introducing adaptation to all levels of critical applications is comparable to the 
multicore challenge running mixed critical applications. [Pop et al. 2013] indicates that when 
several safety functions of different criticality share resources such as running on the same 
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multicore, the standards require hardware and software to be developed at the highest critical level 
among the levels of the safety functions implicated.  

ASIL decomposition when dealing with adaptation should be treated in the same way as the mixed 
criticality issue. The first way to address the previous concern would be to assign the highest ASIL 
for all the functions affected by the adaptation. Otherwise, it should be ensured that no interference 
could occur between the functions impacted by the adaptation. Ensuring freedom of interference 
could be quite challenging, however, it is really a must to guarantee safety of the system. 

3.4 Allocation to hardware and software 

ISO 26262 includes the requirement of allocation of the functional safety requirements to 
preliminary elements of the architecture for the safety concept. This allocation should be enhanced 
once we get the technical safety requirement derived. This occurs when the allocation is done to 
hardware, software or both, although the allocation is difficult when we are considering adaptation. 
This process implies a modification of the behaviour so as to handle an error. This behaviour 
alteration implies that a function could run on different hardware or software elements.  

Adaptation implies that a piece of software executing a function which runs on a specific hardware 
element due to an adaptation is migrated to another piece of hardware different from the previous 
one. We can even have other cases where it is not the hardware which changes but the software, 
the implementation or have a degraded behaviour.  

Should ISO 26262 requirements be modified so the allocation is done for a normal mode and also 
all the possible allocations it could have once it is adapted? That could only be done if the 
adaptation is programmed or prearranged meaning that the functions could only be adapted to 
already specified configuration and not others. This solution would leave all those systems outside 
the standards which provide adaptation in a dynamic way.  

This makes a real challenge to come up with a clear outcome on how this issue should be 
overcome in SafeAdapt. Considering preconfigured adaptation scenarios, all the possible 
allocation possibilities could be fixed for a specific case. On the contrary, since there is no a clear 
and consistent conclusion on how this should be treated when adaptation is carried out in a really 
dynamic way, we consider that much research should be performed in this area. 

3.5 Hardware-Software Interface (HSI) 

In terms of ISO 26262, the HSI “shall include the component’s hardware devices controlled by 
software and hardware sources that support the execution of software”. The information for the HSI 
should include characteristics such as shared and exclusive use of hardware resources, the 
access mechanisms to hardware devices or timing constraints for each service. 

With adaptation, the hardware and or software should be capable to trigger the adaptation and 
dynamically execute different applications with different level of criticality and degradation. It is not 
only needed to specify how software controls the hardware, but also the adaptation implications 
what implies a more complex specification. The access mechanism to hardware devices will imply 
also the adaptation capability. Timing constrains should also consider the adaptation timing needs. 

HSI as it is defined in ISO 26262 does not include any reference to the need to include the 
specification of the adaptation interface. ISO 26262-4:2011 7.4.6.3 clause indicates that relevant 
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diagnostic capabilities such as diagnostic features concerning hardware to be implemented in 
software shall be included in the HSI specification. This might be interpreted as an adaptation 
triggering feature. In spite of the presence of some example contents in Annex B of Part 4, it does 
not reference to any adaptive behaviour.  

3.6 Safety Analysis 

As stated in ISO 26262, safety analyses such as system, design and process Failure Mode and 
Effects Analysis (FMEA), ETA or Markov modelling (inductive analysis methods) and Fault Tree 
Analysis (FTA)  or Reliability Block Diagrams (RBD) (deductive analysis) shall be accomplished. 
Among other objectives, by means of these methods both the validation of the safety goals and the 
verification of safety concepts and requirements are performed. Moreover, safety analyses are 
carried out at the appropriate level of abstraction during the concept and product development 
phases.  

It should be noted that the aforementioned techniques are not directly applicable for adaptive 
systems. They try to find only cause-consequence relationships between component failures and 
system failures [Gudmann et al 2006].  When the question about this issue was raised, 92% of the 
replies indicated that safety analysis should be modified to include adaptation on their scope.  

 

 

Fig. 6 Survey’s answers about adaptation impacts on safety analysis 

3.7 Adaptation requirement management 

ISO 26262 requires tracing safety requirements from high level functional safety requirement into 
technical requirements and then to derive to software and hardware requirements.  

When we questioned this requirement during the survey the answer is not clear. Only 46 % of the 
respondents answer if the adaptation requirements should be trace separately from the safety 
requirements.  
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Fig. 7 Survey’s answer about the adaptation requirements management 

Such an unclear answer makes us think how we should manage the adaptation requirements 
needs some further analysis.  

3.8 Adaptation Verification & Validation 

In terms of ISO26262 different hardware metrics need to be achieved depending on the required 
ASIL level. Adaptation could significantly lead to a change of HW metrics considerations and they 
should be available for all the possible adaptation scenarios having to be parameterized to take in 
account those adaptation procedures. Furthermore, Diagnostic Coverage (DC) would be more 
complex to either calculate or verify as well.  In other words, it could influence whether certain 
hardware parts contribute to Safety Goal violation and, consequently, the metrics could have a 
different value. 

Several literature studies such as [Eghbal et al 2009] [Alexandersson and Karlsson 2011] refer to 
the previous concept stating how different workloads running on the same microprocessor at 
different times lead to different diagnostic coverage. This concept has been validated by means of 
fault injection dependability validation technique [Arlat et al 1993] [Mariani et al 2006]. This 
problematic could be addressed by the SEooC approach. 

Other parameters such as Fault Tolerant Time Interval (FTTI) would also need to take adaptation 
into account. The verification of this parameter could also be a challenge since the different 
reconfiguration/adaptation scenarios shall be taken in account.  
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Fig. 8 Survey’s answer about FTTI and hardware metrics 

In the survey we asked about Fault Tolerant Time Interval measurement and 74% of the 
respondents answered that the measure needs some modifications as adaptation does impact on 
the obtained value. In fact, 79% of the survey answers say that adaptation on software implies a 
modification on the hardware metrics. We might need more complex methods in order to validate 
that the initial metrics obtained during the safety analyses evaluation have not changed. 

3.9 Maintenance 

ISO 26262 part 7 Clause 6 deals with operation, service (maintenance and repair) and 
decommissioning activities. Processes related to service shall be planned and evaluated. Systems 
maintenance should also include adaptation maintenance. 

If adaptation is considered as mean for repairing or upgrading a function, then this clause should 
apply, even if it has to be mentioned that this clause was not written having adaptation functionality 
in mind. 

Frtunikj [Frtunikj, 2014] proposes the use of plug and play mechanism as an adaptivity function: 
“Via Plug&Play an owner should be able to personalize his car, stay up to date by adding new 
hardware and software components, or upgrade old components with newer software.” From the 
functional safety perspective the use of this mechanism could introduce undetected hazards as 
possible interference to other components. Responsibilities assignation could differ if this 
mechanism is applied. 

3.10 Safety Element out of Context (SEooC) development 

Part 10 of ISO 26262 includes guidelines for the Safety Element out of Context development. 
SEooC is a safety-related element which is not developed for a specific item.  

Ruiz et al. [Ruiz et al 2013] mentioned the difficulties of SEooC development as the context in 
which the element is going to be integrated is unknown at development time. With the SEooC 
definition we can interpret that any application which adapts can be catalogued as a SEooC 
because the adaptation implies the lack of knowledge about in which hardware environment such 
application might be used or executed. 

Part 10 of ISO 26262 mentions as examples of SEooC, AUTOSAR [Autosar] application software 
modules and AUTOSAR basic software modules. Adaptable applications can be designed as 
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AUTOSAR application software modules; consequently adaptable functions and SAPC software 
can be classified as software SEooC. The adaptation feature such as the default error handling 
mechanism can be developed following the specification of an AUTOSAR basic software module, 
thus it can be defined as a SEooC. 

If adaptable functions and adaptation feature are considered as SEooC, then the assumption 
identification becomes a more challenging activity. Different contexts, in which functions could be 
executed, should be considered as assumptions. During design time, the different environments 
where the function is expected to be executed, running should be assumed. As these contexts are 
difficult to identify before operational time, assumptions are not specified as possible context in 
which the application will run but instead specify as environment constraints defining the minimum 
requirements in order to run the applications. 
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4 Safe Adaptation Platform Core (SAPC) 

In SafeAdapt, adaptation will be achieved with the help of the Safe Adaptation Platform Core 
(SAPC). The SAPC is software that is hosted on different computing platforms (RACE and TMDP), 
which in turn are commonly referred to as core nodes. Each instance of the SAPC controls the 
adaptation for its local core node, but also guarantees to reach a correct system configuration with 
respect to all other instances of the SAPC. It is important that the SAPC follows safety standards 
and limits its impact on the effort for designing the resulting system. For this, each SAPC regularly 
sends information about the current state of its platform to the other SAPCs. When combining this 
volatile information with the predefined requirements of the vehicle, the SAPC is capable of 
calculating a configuration to address the newly occurred need for adaptation. 

Fig. 9 shows the intended concept of the hardware architecture as far as it is relevant for the 
SAPC. The figure uses boxes for gateway nodes, round cornered boxes for core nodes, and 
circles for switches (see glossary). Gateway nodes provide access to aggregates, such as sensors 
and actuators, which are not designed to be directly connected to an Ethernet network. To ensure 
the required level of fault-tolerance, the power supply of the nodes has to be designed in a way 
that the loss of one power line still allows a safe operation. This is depicted through red and blue 
colored borders denoting the two separate power circuits used in the demonstrator car (see D5.1). 
The demonstrator core is based on results of the research project RACE [RACE] and as such uses 
multiple overlapping rings to connect the nodes in the system. In SafeAdapt, it is planned to 
replace the inner ring (core network) containing the main computing platforms (core nodes) of the 
RACE vehicle with a Time-Triggered Ethernet (TTE) based data communication. The wiring of the 
outer rings with the gateway nodes can, however, remain unchanged. 

 

Fig. 9 Overview of Hardware Architecture 

The SAPC is part of the Information and Communication Technology of a vehicle (ICT) which can 
be described as follows: 
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The adaptation core is a logical item which consists of several control-computers, the so called 
core nodes (see Fig. 9). The adaptation core ensures the consistent and unique control of all 
actuators in any use-case of adaptation mentioned within this project. In the SafeAdapt 
implementation the adaptation core or CCC comprises a SIEMENS and a DELPHI platform also 
known as core node or CSCC as illustrated in Fig. 10. 

The uniqueness of the control is ensured by the safe adaptation core SAPC. The SAPC has a local 
instance on each core node. This instance is a piece of software deployed onto each core node, 
thus on the SIEMENS and on the DELPHI platform. 

Each instance of the SAPC consists out of a set of algorithms and interfaces to handle: 

 detected faults, 
 assign faults to fault containment regions (FCRs), 
 rate the health-state of each FCR, 
 exchange the health state of each FCR with all other instances of the SAPC and to provide 

a consistent data base on each core node. The database is readable only from the SAPC 
and it might be writeable by diagnostics, 

 decide on the basis of the interactive consistent data base on each core node  
o which application to deploy, 
o which application to execute, 
o which application to run where as master and where as slave. 

Acc. to [Butler 2008], fault containment region means: 

“The primary goal of a FCR is to limit the effects of a fault and prevent the propagation of 
errors from one region of the system to another. A FCR is a subsystem that will operate 
correctly regardless of any arbitrary fault outside the region. FCRs must be physically 
separated, electrically isolated, and have independent power supplies. Physical dispersion 
limits the effect of physical phenomena such as the impact of a micrometeoroid. Electrical 
isolation protects against fault propagation from lightning or other forms of static discharge. 
Power supply isolation prevents a power failure affecting the entire system. The number of 
FCRs in a system is a primary factor in determining how many faults a system can tolerate 
without failure.” 

In the context of SafeAdapt, various FCRs have been defined for each platform at different levels. 
It is important to insist on the need to prevent errors to propagate from one FCR to another to a 
certain degree. For further information, please refer to D3.2 (to be published). 

The concept of interactive data-consistency is described in [Butler 2008] and [Armbruster 2009] at 
which the latter also explains the master/slave concept. 
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Fig. 10 Domain-model 
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5 Safety Assurance for the Safe Adaptation Platform Core  

The SafeAdapt Platform Core as it is explained before has resulted to be an advanced and 
sophisticated mechanism in charge of the default error handling. One of the big concerns at 
concept and design time of the SAPC is the mitigation of possible hazards that could occur due to 
the adaptation.  

This section includes a description of the methodology followed in order to determine the safety 
goals specific for the adaptation. This is based on an iterative process described in Fig. 11. 

 

Fig. 11 Process followed for the safety goals definition 

The activities executed along the process are the following: 

1. Brainstorming session to identify possible error and faults on the adaptation 
Different partner experts were asked about possible failures and effects at vehicle level 

2. As a result of the brainstorming session, we were able to define FTA for the adaptations 
functions 

3. HARA for the malfunctions identified on previous phases 
4. Review of the HARA from different partners 
5. Safety goals definition 
6. Review of the safety goals  
7. Safety requirements specification  
8. Review of the safety requirements by different partners 

To reach the independency level required by ISO 26262, it has been decided to make the work by 
a group and to review the performed work by other partners. 
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5.1 Safe Adaptation Platform Core FTA 

As a result of FTA activity, we came across with the following high-level FTAs. In this sub section, 
resulting FTA diagrams are included being the scope of this analysis the SafeAdapt core system.  
The illustrated fault trees have been defined at a preliminary stage of the design of the SAPC and 
will be part of the inputs required for an appropriate design. 

 

 

Fig. 12 Detection FTA 
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Fig. 13 Passivation FTA 

 

 

 

Fig. 14 Reconfiguration FTA 
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5.2 HARA for adaptation 

FTAs were used as inputs for defining possible malfunctions that could trigger hazards when doing 
the adaptation. Based on these inputs the potential effects were analysed. After these inputs the 
effects were analysed. ASIL for these hazards were not taken into account as it is completely 
dependable on the functions to adapt.  

Functions Malfunctions ID 
Hazard 

Description 
Potential Effect 

F001-Detection 

Unwanted detection H001
Trigger the need for 
adaptation 
unnecessary 

Overloading processor and other 
applications can be degraded or 
delayed 

Misdetection H002
Adaptation is not 
triggered 

A fault on a core node will continue 
and  hazardous situations will not 
be mitigated 

Delayed detection H003
Adaptation is 
delayed 

There is no time for the driver to 
control the hazardous situation that 
triggers the adaptation 

F002-
Passivation 

Unwanted passivation H004

Application, 
partition, computing 
core, 
communication link 
are isolated 

A critical application is isolated and 
this could lead to not being able to 
activate it again creating a 
hazardous situation 

Miss passivation H005

Adaptation is not 
triggered, 
reconfiguration, 
reallocation and 
activation will not 
be triggered 

A fault on a core node will continue 
and  hazardous situations will not 
be mitigated 

Delayed passivation H006
Isolation of the fault 
is delayed 

A fault on an application could 
trigger dependent failure due to the 
delayed isolation 

Degraded passivation H007
Isolation of the fault 
is not completed 

A fault on an application could 
trigger dependent failure due to the 
not complete isolation 

F003-
Reconfiguration 

Unwanted 
reconfiguration 

H008

Reconfiguration is 
triggered 
unnecessarily 
without being 
isolated any 
application (as 
there is no fault) 

Unwanted reallocation will be 
carried out 

Incorrect reconfiguration H009
Resources changes 
are not applied 
correctly 

A resource change into a 
passivated one could activate a 
faulty resource and the hazardous 
situation will not be mitigated. 

Miss reconfiguration H010

Adaptation is not 
triggered, 
reallocation and 
activation will not 
be triggered 

Even if the fault is isolated, the 
reallocation will not be carried out 
and thus, the loss of reactivation of 
some critical applications could
lead to hazardous situations (or the 
hazardous situation is not 
mitigated) 

Delayed reconfiguration H011

The action of 
changing the 
resources 
distribution is 

Reallocation phase will be delayed 



  

D3.3 Specification of ISO 26262 safety goals for self-adaptation scenarios  
 

28 
 

Functions Malfunctions ID 
Hazard 

Description 
Potential Effect 

delayed 

Degraded reconfiguration H012
Resource 
distribution change 
is not completed 

The application might not have the 
resources needed  

F004-
Reallocation 

Unwanted reallocation H013

Reallocation is 
triggered 
unnecessarily 
without any 
reconfiguration has 
been previously 
carried out 

Unwanted activation will be carried 
out 

Incorrect reallocation H014

When there is no 
free space to 
reallocate the 
application, a lower 
ASIL level 
application replaces 
a higher ASIL level 
application. 

Higher ASIL level application does 
not run anymore and it could lead 
to hazardous situations (or the 
hazardous situation is not 
mitigated) 

Miss reallocation H015
Adaptation is not 
triggered, activation 
will not be triggered

Even if the fault is isolated, the 
reallocation/activation will not be 
carried out and thus the loss of 
reactivation of some critical 
applications could lead to 
hazardous situations (or the 
hazardous situation is not 
mitigated) 

Delayed reallocation H016

The distribution of 
applications into 
resources is 
delayed 

Activation phase will be delayed 

Degraded reallocation H017

The distribution of 
applications into 
resources is not 
completed 

The effect is the same as an 
incorrect allocation 

F005-Activation 

Unwanted  activation H018

Activation is 
triggered 
unnecessarily 
without any 
reallocation has 
been carried out 

If there was no space, an 
application could be unnecessarily 
replaced 

Miss  activation H019

Adaptation is not 
triggered, the 
application does 
not operate 

The no reactivation of some critical 
applications could lead to 
hazardous situations (or the 
hazardous situation is not 
mitigated) 

Delayed activation H020
The application 
operates late 

The delay on the activation could 
lead to hazardous situations 

Degraded activation H021
The application 
does not properly 
operate 

The hazardous situation is not 
mitigated 

Table 2 Hazard analysis for the adaptation 
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5.3 Safety goals 

This section includes the list and description of the high level safety goals for the adaptation.  

Preliminary list of safety goals: 

SG1: Ensure adaptation is correctly triggered  

Adaptation is triggered based on information about a failure on a system element. In the case it is 
unnecessarily triggered due to an error on the detection, the processor can be overloaded and 
other applications can be degraded or delayed. One of the main goals for this mechanism is the 
correct detection of the adaptation need. 

SG2: Ensure correct isolation of failures 

The failure can affect different elements of the system and therefore the impact of the failure 
effects might differ. A fault on an application could lead to dependent failures as a result of the not 
correct isolation. The SAPC should be able to handle fault containment regions of different sizes 
and correctly isolate the possible outputs of these affected regions. 

SG3: Resources are correctly configured  

When adaptation is executing, it is important that the resources are rightly configured. Even if the 
fault is isolated, the adaptation will not be carried out and thus the loss of some critical applications 
could lead to hazardous situations if the resources are not reconfigured. 

The adaptation mechanism not only needs to carry out the reconfigurations but also the 
initialization of replacement cores and activation of the applications on the defined cores. In 
addition it must be guaranteed that actuators and sensors are accessible from the replacement 
core in a proper way. Resources not only need to be available but also the applications should be 
able to run on those re-configured resources. 

SG4: Applications are correctly activated 

Once the applications are on the new core, those applications should also need to run in a safe 
way, being this especially important on high ASIL level application (ASIL D). If those applications 
are not available and running correctly at the same point as before the adaptation started, it could 
lead to hazardous situations.  

SG5: Adaptation timing should be less that the time required to achieve a safe state 

Adaptation should occur at the shortest time as possible. That time should not be more than the 
fault tolerant time interval (FTTI) of the application or we will run on the loss of control.  FTTI 
[ISO26262 2011] determines the time-span in which a fault or faults can be present in a system 
before a hazardous occurs.  

5.4 Safety Concept 

After stating the adaptation related safety goals, this section defines a system level functional 
safety concept and briefly describes the functional safety concept at core node level so that the 
adaptation hazards are properly addressed. 

Current automotive approaches don’t usually support fail-operational applications. [SAFE project 
D3.3.2]. The system usually would enter in a safe state even if caused by the Quality Management 
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(QM) part. SafeAdapt functional safety concept follows the direction of future research challenges 
providing fail-operational behaviour at system level for different automotive functions. To get a 
common understanding some basic definitions of different failing strategies are explained below.  

 Fail-operational: the component/system is still operational after one failure. In other words, 
one failure is tolerated and it will continue to fulfil its intended purpose at least until the 
driver can take back the control of the corresponding function or stops carefully.   

 Degraded operational (graceful degradation): In this case, the fail-operational behaviour 
is degraded with respect to the full performance operation. The application performance 
could be degraded based on different performance indicators. 

 Fail-safe: Here, the component/system enters into a safe state after a failure occurs. Thus, 
a critical failure is prevented. One of the possible examples within this group is the fail-silent 
behaviour.  

 Fail-silent: a fail-silent node either functions correctly or stops working (turns into silent) 
after an internal failure is detected. In this second case, the node would not send any 
output data to the rest of the system staying externally quiet. 

 Critical failure: the system goes into an incorrect behaviour which could lead to a 
catastrophic result. 

 

One of the most common solutions is to combine fail-silent units in a proper way to achieve a fail-
operational behaviour. 

Despite the fact that current automotive approaches rarely support fail-operational applications, the 
current research starts to follow the direction of providing innovative functional safety concepts so 
fail-operational behaviour at system level for specific functions is achieved. It should be noted that 
the increase of complexity in automotive application functions requires more sophisticated 
functional safety concepts. Furthermore, ensuring functional safety in autonomous driving will 
demand safety monitoring at functional level with redundant algorithms.  It is noted that the 
aerospace domain uses self-adaptation as such in all its highly safety-critical systems successfully 
already since decades. Thus self-adaptation for the automotive domain has been identified as a 
viable solution to achieve many upcoming challenges of distributed software systems as well. 

In the case of SafeAdapt, fail-silent behaviour is implemented at the core node level whereas 
SAPC system level safety mechanism decides between different fault tolerant strategies or 
adaptation scenarios so fail-operational behaviour at system level is obtained. As previously 
stated, this section points out a refined system level functional safety concept at different levels so 
that the risks introduced by adaptation hazards are appropriately addressed. Especially, hardware 
architecture, software and communication perspectives are further explained.  

In addition, the functional safety concept at core node level is briefly pointed out. The main 
mechanisms implemented for fault containment and mitigation of possible hazards are described at 
different levels. As a consequence for having these safety mechanisms included, the item is 
maintained in a safe state (with or without degradation) and a fault does not lead directly to the 
violation of the safety goal(s). The executed automotive function such as ACC (Adaptive Cruise 
Control) or SBW(Steer-by-wire), plays an important role on the selected adaptation strategy. This 
includes different redundancy strategies i.e., hot/warm/cold-standby or graceful degradation 
depending on the nature of the failure and the criticality of the safety function. In other words, to 
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address the critical timing constraints imposed by the highest ASIL functions hot-standby 
implementations are required.  

The following table summarizes in detail the possible adaptations covered by the SAPC. 

 

Form of adaptation Description

Different core node An application is instantiated on a different core node. In case the previous core 
node is defective, the node will also be passivated 

Degrade application An application is provided with fewer re-sources during execution, such as 
optional input values or longer execution periods. The adaptation is based on 
different execution paths of the application. SAPC must be aware of these 
options, to consider them during the adaptation’s planning phase. 

Passivate application An application is disabled either as part of a degradation strategy or as part of 
the passivation of the entire platform. Thus the application is not called by the 
scheduler anymore. 

Table 3 Forms of adaptation 

As previously reflected on deliverable D3.1, the architecture consists of two core nodes i.e. TMDP 
and RACE built on different hardware, platform software and with different safety mechanisms in 
place.   

The functional safety concept at system architectural level is illustrated in the following figure. Fault 
Tolerant E/E architecture is introduced which includes several of the used fault tolerance 
mechanisms at system and ECU level together with fault detection, isolation and recovery strategy 
(FDIR).  

These core nodes communicate in a time-triggered manner allowing synchronous communication 
between them. The required level of fault tolerance is ensured by different strategies. Some of the 
most important ones are highlighted in green in the figure and will be explained later on. 
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Fig. 15 Safety concept at architectural level 

  

As illustrated in Fig. 15, the different elements in the network are distributed as double star 
architecture, this way possible communication failures are addressed. Furthermore, the required 
level of fault tolerance is achieved by a replication of the smart sensor and actuators. Sensors use 
the so called 2-out-of-3(2oo3) fault tolerance pattern where a voter determines which the correct 
sensing value is. It allows high protection against random hardware faults. 

Several publications have appeared in recent years documenting fault-tolerance design patterns 
[Armoush 2010]. One of the preceding redundancy patterns is known as Heterogeneous Duplex 
pattern, Heterogeneous Redundancy Pattern or Diverse Redundancy Pattern. It deals with random 
and systematic faults increasing both reliability and safety of the system. As highlighted in a 
previous paragraph, it consists of two independent and diverse hardware channels (core node 1 -
RACE- and 2 -TMDP-) designed in different technologies and developed by different teams. 
Especially, the combination of two different technologies such as Microcontroller (TMDP) and 
FPGA (RACE) provides effective coverage for systematic and common cause failures. 

One of the available channels is known as the active module being the second one the so called 
standby or spare module. Depending on how the spare module is implemented three different 
modes for redundancy are available: 
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a) Hot-standby: both channels are continuously working. This solution is highly 
recommended when strict time constraints are a must and for high-safety level applications. 
Even though, one of the major drawbacks of this solution is the high power consumption. 

b) Warm-standby: the standby spare channel runs in idle state. In case a fault is detected in 
the primary module, the standby one takes over its corresponding load. 

c) Cold-standby: this low-power consumption solution is represented by a spare channel 
which waits for a failure on the primary channel. If this happens, it begins to operate 
immediately. 

As previously stated, this solution has a high random and systematic failure rate being a very 
effective solution for applications requiring high safety integrity levels. Therefore, this solution has 
been applied to SafeAdapt. The backup core node will work in standby mode to take over the 
functions of the primary core node if the master core node fails. 

The highest Automotive Safety Integrity Level (ASIL) functions require from hot-standby solutions 
to address the critical timing constraints. 

5.4.1 Hardware/Software Built-in Safety Mechanisms (Core Node Level) 

As a matter of fact, each core node should hold a set of hardware and software safety mechanisms 
to support ASIL D applications and to guarantee fail-silent behaviour at component level. The 
Siemens’ implemented safety mechanisms are implemented at application level whereas Delphi´s 
solution combines hardware and software implemented safety mechanisms to either detect or 
correct certain set of hardware random failures. 

More specifically, the implemented Siemens’ core node safety mechanisms are based on the 
assumptions that hardware faults will lead to a failure-effect that can be observed looking on the 
ethernet frames sent out from bot lanes of its core node. On the contrary, Delphi´s system-on-chip 
solution has several hardware and software embedded safety mechanisms in order to 
detect/correct the aforementioned failures.  

Regarding transient faults, they should be already covered at ECU level whereas not recoverable 
permanent faults are reported to the fault filter so the adaptation process begins. The detection of a 
not recoverable permanent fault at core node level such as a not recoverable memory failure, 
leads to an adaptation need. 

In the same way as redundancy architectural patterns are developed at system level, lockstep 
architectures [ISO26262 2011] [Mariani et al. 2006] are a guarantee at core node level. As stated, 
different solutions are provided by the core node developers. 

In the case of Siemens, a loosely coupled “SW lockstep” is implemented and the output packages 
compared every 10 ms in order to detect mistmatches.  

Concerning the system-on-chip (SoC) used on TMDP, a hardware lockstep is implemented. 
Moreover, since the two channels can be diversely built, this fault tolerance pattern can deal with 
both systematic and random hardware failures of the CPU. Operations are executed on both 
channels and if a mismatch is manifested in the output of the two processors, a flag is activated. 
The hardware diversity provides effective coverage for common cause failures as well and 
systematic failures. The drawback of this approach is that it could be extensively complex to prove 
the diagnostic coverage. CPU failure modes are also covered by software implemented built-in 
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self-test (BIST) features and the inclusion of a watchdog. This last one is capable of detecting 
scheduling and timing errors.  

Regarding memory protection, all memory is protected by hardware Error Correction Code (ECC) 
and a memory protection unit (MPU) that stretches over the whole address space to detect any 
software interference.  

On the other hand, software based integrity checks are also implemented at application level.  

Monitoring offers a solution to the detection of clock (clock monitors) and voltage errors 
(undervoltage and overvoltage detection). 

Platform implemented safety mechanisms serves as core node guarantees to implement the 
adequate error handling strategy at system level. When this error cannot be handled in a safe 
manner at ECU level, the SAPC is notified and the whole system starts the corresponding 
adaptation strategy to continue operating either degraded or fully operationally.  

Following list summarizes the types of fault regions that the SAPC concept handles: 

 Platform failure/Core Node: a random hardware failure that affects the whole core node. 
The whole platform is considered as the containment region 

 Memory failure: permanent memory cell failures or of memory banks, or memory area 
failures are classified in general as memory failures. 

 Timing failure: A failure on the internal watchdog, so that the outputs are no longer valid. 
 SoC Bus System failure: Any problem detected on the SoC which is not recovered by CRC 

appliance thus the SoC is untrusted 
 Power supply failure: A permanent fault or a transient power supply faults, like a crank 

pulse or other short power drop, that will make the core node to reset. 
 Application failure: there is a failure on the application due to unavailability to the input data 

or a random hardware failure makes impossible to the application to run on a normal more. 
Software design failures are not covered. 

  



  

D3.3 Specification of ISO 26262 safety goals for self-adaptation scenarios  
 

35 
 

For further detailed information about the error handling strategy at system level, the following 
table is introduced. Fault region determines where the failure occurs, detection mechanism points 
out how it is supposed to be handled at component level whereas fault containment represents 
where to contain the effect. Finally, system reaction for each case is set.  

 

Fault Region Detection mechanism Fault       Containment System  reaction

Core Node failure Loosely coupled lockstep/ 
HW lockstep 

System Failover

Memory failure Recoverable by MPU ECU No need for failover

Not recoverable by MPU System Failover

Timing failure SoC internal WD System Failover

ECU WD System Failover

SoC Bus System 
failure 

Recoverable by CRC ECU Depending on 
performance level 

comparison
Not 

recoverable
System Yes 

Power supply failure Fail-silent System Failover

Sensor failure 
 

Input loss ECU Redundant path

Input 
comparison 

System Degrade application

Network failure Input 
comparison 

ECU/System Redundant paths

Table 4 Error handling strategy at system level 

5.4.2 Communication perspective 

Another key element of the architecture is the Health Vector (HV). The HV provides information 
about the status of the core-nodes, in particular errors, and is exchanged periodically.  It contains 
platform specific status such as the running applications information and it is periodically sent from 
one core node to the other in a predefined time slot through a network connected by switches. It is 
absolutely essential that the system does not differ from the temporal behaviour defined at design 
time.  

To simplify the temporal determinism and partition of the system, all computing platforms must 
communicate over a synchronous communication medium, such as a time-triggered network. In 
case of a not recoverable core node/ECU level failure such as a power failure, the health vector is 
not transmitted and the other core node takes the function over according to the predefined 
adaptation strategy. Yet if the failure source is a permanent fault detected by a safety mechanism 
such as the hardware lockstep the degraded performance level is set to 1 and the HV transmits 
this information to the other core node.. The HV also informs about the state of the core node. This 
provides a map of the status of the core nodes network where SAPC is deployed. A faulty core 
node could be a fail-silent stay where no HV is be transmitted or could stay in a fail-safe state 
where it continues transmitting the HV but informing that it is in an isolated mode. 
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In the same way, the application running mode (master/slave) is transmitted in order to know what 
the current status of a specific application is. Once again, it is important to underline that 
adaptation rules are predefined in the database. 

HV includes two different mechanisms to ensure information correctness or data integrity: 

• Cyclic redundant check 

• Rolling counter 

Data Validation (Integrity Check) is responsible to provide checks on the input data and the system 
itself during the execution of the derived algorithm. A cyclic redundancy check (CRC) is included 
for that purpose. Range checks or correctness checks are carried out by computing parity or CRC 
check. Likewise, a rolling counter is part of the HV to guarantee that the current message has been 
updated since the last iteration. This is used to check data omission. 

5.4.3 Software Perspective 

At software perspective the SAPC algorithm should also take care on avoiding and mitigation of 
hazards. These mechanisms help to complete a safe adaptation process by ensuring the 
avoidance of single points of failure leading to safety goal violations mentioned in the previous 
section. 

The previous statement is further specified in the following figure where it can be seen that the 
adaptation software comprises different safety mechanisms (highlighted in green boxes) to shield 
the system from the violation of a safety goal. 
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Fig. 16 Safety concept for the SAPC at software perspective 

As reported by ISO26262-6, plausibility checks are recommended for ASIL A, B, C and highly 
recommended as error detection mechanisms at software architectural level for ASIL D. This 
software implemented safety mechanism checks the integrity of any signal by means of a specified 
reference model of the desired behaviour, assertion checks or comparing signals from different 
sources. To put it in another way, some predicates are defined in a set of variables to determine 
their validity at runtime. This is used to filter the set of failures that SAPC can handle and 
performance range of the core. Plausibility checks would be part of the fault filtering, in this way the 
SAPC input will not accept failures that can be handled. Specifically the failures filter should be the 
ones included on the previous subsection. 

The integrity check provides a validation on the input data and the system itself during the 
execution of the derived algorithm. Range checks or correctness checks by computing parity or 
CRC check complete the set. 

Data consistency protection should be ensured between the local databases of the core nodes 
(RACE and TMDP). The content of both of them must be equal and neither incoherencies nor 
inconsistencies will be found between them. Even if this feature is guaranteed during the design 
time, the local databases include information redundancy mechanisms such as parity bits or CRCs.  

On the SafeAdapt core software implementation, we also include different patterns in order to fulfil 
the safety requirements we have identified before. 
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Likewise, fault tolerance is achieved through different mechanisms to detect or correct random 
hardware faults, systematic ones must be either avoided or removed during design time. Jean-
Claude Laprie [Laprie 1992] argued that techniques such as formal verification can be applied to 
ensure fault removal of the design. This could be carried out by performing model checking to find 
possible design errors of Adaptation Logic and Complex Device Driver modules. Especially, model 
checking would be performed to verify whether the component model meets a given specification.  

5.5 Arguments about safety verification 

“A safety case communicates in a comprehensive and structured way set of safety argumentation 
supported by evidence which demonstrates that the system is safe for a certain context.” 

The main concepts handled on a safety case are: 

 Arguments: Explanation on how the evidences can be interpreted as indicating safety for 
the objectives/requirements … 

 Evidences: Results from observing the properties of a system. There are different types of 
evidences.  

The OMG has defined a standard SACM (Structured Assurance Case Metamodel) that deals with 
the safety case modelling. SACM aims to provide a modelling framework to allow users to express 
and exchange their argument structures. The representation of an argument in SACM does not 
imply that the argument is complete, valid, or correct. Similarly, the evaluation or acceptance of an 
argument by a separate party is not covered by the SACM. In the SACM model, structured 
arguments comprise argument elements (primarily claims) that are being asserted by the author of 
the argument, together with relationships that are asserted to hold between those nodes. [SACM 
2014] 

The SACM does not propose a graphical notation but rather reference to existing ones (GSN and 
CAE) GSN stands for Goal Structuring Notation. GSN explicitly represents the individual elements 
of any safety argument (claims, evidence and context) and (the relationships that exist between 
these elements (i.e. how individual requirements are supported by specific claims, how claims are 
supported by evidence and the assumed context that is defined for the argument). The principal 
symbols of the notation are shown in the next figure. 

  



  

D3.3 Specification of ISO 26262 safety goals for self-adaptation scenarios  
 

39 
 

 

Fig. 17 Main elements for the GSN graphical notation 

Prossurance is a safety assurance management system to support a cost-effective compliance 
assessment and certification of safety-critical products in sectors such as aerospace, railway, 
maritime and automotive. 

Prossurance can work both as a file-based or database-base (Postgress) tool. Prossurance has 
been developed with the following technologies: Eclipse Kepler with GMF and EMF, XText, 
Subversion (SVN) Team Provider for artefact versioning if desired, a subversion client such as 
TortoiseSVN, Java Environment 1.7, Windows Operating System. 

Prossurance has a complete functionality to create argumentation diagrams applying the GSN 
graphical notation. Prossurance includes a safety case editor that internally uses the SACM 
metamodel and takes advantage of the GSN graphical notation.  

For detailed information, the safety case diagrams concerning safe adaptivity have been included 
in the following pages. To some extent, the main goal of these safety case diagrams is to define 
the strategy of which the safety goals verification process should be. This helps to justify that the 
system is acceptably safe and to enumerate which would be all the necessary evidences in order 
to prove that safety goals are correctly addressed. 

 

 



 

 

Fig. 18 Excerpt of the safety case (G1)



 

 

 

Fig. 19 Excerpt of the safety case (G2) 

 

 

 

 

 

 

 



 

 

 

Fig. 20 Excerpt of the safety case (G3)



 

 

 

Fig. 21 Excerpt of the safety case (G4)



 

 

 

 

Fig. 22  Excerpt of the safety case (G5) 

 

5.6 Safe Adaption Platform Core safety goals verification 

5.6.1 Introduction 

Safety critical systems have to fulfil safety requirements in addition to functional requirements. 
Safety requirements describe the characteristics that a system must have in order to be safe. This 
involves the identification of all possible hazards that can take place, and that may harm people or 
the environment. Safety-related issues are often captured in standards describing products and 
processes to be considered throughout the life-cycle of a safety critical system. In SafeAdapt 
project, the safety concept of ISO 26262 during the design and product development phase will be 
taken into consideration. The safety standard ISO 26262 is an implementation of the more general 
IEC 61508 standard that addresses safety issues in the automotive industry. The standard 
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prescribes that a safety case should be created for every system that has safety-related features, 
and it says that part of the system documentation should provide evidence for the fulfilment of 
safety requirements, thus guaranteeing functional safety. 

5.6.2 Safety Case 

Part of the certification process in the automotive domain is the assessment of a system through 
an inspection agency. To convince inspectors that a system is safe, a safety case should be 
created. The safety case communicates a clear, comprehensive and defensible argument that a 
system is acceptably safe in its operating context. The argument should make clear that it is 
reasonable to assume the system can be operated safely. It is typically based on engineering 
judgment rather than strict formal logic, and it provides evidence that the risks (hazards) 
associated with the operation of the system have been considered carefully, and that steps have 
been taken to deal with the hazards appropriately. 

The safety argument (SA) must identify all matters significant to the safety of the system and 
demonstrate how these issues have been addressed. A convenient way to define a safety 
argument is through the goal structuring notation (GSN) devised by Kelly [Kelly 1998] which is 
based on earlier work by Toulmin on the construction of arguments [Toulmin 1958]. An argument 
consists of claims whose truth should be proven. The facts used to prove the claims are referred to 
as data, and the justification for why data prove a claim is described by warrants. If it is possible to 
dispute a warrant, backing can be used to show why the warrant is valid. 

The main elements of the GSN are goals and solutions. Goals correspond to Toulmin’s claims 
whereas solutions relate to Toulmin’s data, also termed evidence. For constructing a safety case, 
we have to determine which evidence is required for a particular safety argument, and why the 
evidence supports the claim. According to the GSN, the safety case starts with a top-level claim, or 
a goal, such as “the system is safe” or “safety requirements have been realized.” 

The top-level claim is then decomposed into sub-ordinate claims down to a level that a sub-claim 
can be proven by evidence. The concepts of the GSN are displayed in the example in the next 
figure.  
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Fig. 23 Example of GSN tree, decomposition of the goal “the product is safe” 

Claims and sub-claims, or goals, are represented as rectangular boxes and evidence, or solutions, 
as circles. A strategy-node, represented as rhomboid, contains the explanation why a goal has 
been decomposed. 

The argument can be constructed by going through the following steps [1, 3]: 

1. Identification of the goals to be supported. 
2. Definition of the basis on which the goals are stated. 
3. Identification of the strategy to support the goals. 
4. Definition of the basis on which the strategies are stated. 
5. Elaboration of the strategy including the identification of new goals and starting from step 1, 

or moving to step 6. 
6. Identification of a basic solution that can be proven. 

It is difficult to propose a standard safety case structure that may be valid for most systems. 
However, some of the argumentation will be the same for many systems, such as “all safety 
requirements have been realized” or the like. Such argumentation structures, or so-called safety 
case patterns, may be reused in several safety cases for different systems. In the literature, 
several theories have been proposed to explain that by using such patterns, safety cases can be 
devised much faster. Kelly and McMermid [Kelly McDermid 1997] proposed safety case patterns 
as a means to reuse common structures in safety cases. [Wagner et al 2010] use argument 
patterns to reusable parts of our safety case and provide them as building blocks for future 
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automotive safety cases. They also mentioned that "it is desirable to establish general and domain-
specific patterns as a pattern library for a faster and easier creation of safety arguments." 

[Hawkins Kelly 2009] and [Hawkings et al 2011] mentioned "the effectiveness of the software safe-
ty argument patterns has been demonstrated through application to a number of case studies". 

The drawback of this approach is that potential systematic failures could be introduced and this 
bears a risk in the direction of the next level which is autonomous driving. Therefore, we would like 
to emphasize that further work needs to be done in this area to improve the current state of the art. 

A particular GSN decomposition proposed by the EU project EASIS [EASIS 2006] organizes the 
argumentation into a product branch and a process branch, claiming that “a system is safe” if “the 
process is safe” and “the product is safe”. The safety of the process can be assured through 
application of certified development standards, such as the IEC 61508 or the V-model. Here, 
questions should be asked about how the product is developed, such as “did we perform hazard 
analysis?”, “do we have a hazard checklist?”, “did we perform a preliminary hazard identification?”, 
“did we implement the results of the preliminary hazard identification?”, and so on [EASIS 2006].  
One of the tools considered in SafeAdapt is Prossurance, a product and process assurance 
management system to support the compliance assessment and certification of safety-critical 
systems such as automotive products that need to comply with ISO 26262, where all of these 
questions are addressed. 

On the product side, we can decompose the claim “the product is safe” into the sub-goal “the 
safety requirements are traceable” which turns the satisfaction of our safety case into a traceability 
problem. We can argue, that if all safety related aspects of our system can be traced to their origin 
and to their realization, the system is safer, given the process is safe (proof of the process branch). 
Traceability is a prerequisite for assessment and validation of the safety goals, which we refer to as 
“proof of safety requirements”. We can then decompose the traceability goal further into “proof of 
safety requirements”, “origin of safety requirements documented”, and “safety requirements 
realized”. This extended organization of the safety case is depicted in the previous figure and, 
through its general nature, it can be used as a pattern for all systems. 

It may be envisaged to adapt such approach by the long term proven aerospace development 
standards such as DO RTCA 178B (or the new version “C”) for software or the DO RTCA 254 for 
hardware. They define standard development processes that need to be followed and an 
independent review authority to prove argumentation and design. However, such investigation and 
suitable adaptation for the automotive industrial domain, exceeds the current means of the project. 

 

5.6.3 Traceability of Safety Requirements 

In the previous section, we argued that part of the proof of a safety case can be achieved through 
tracing all safety requirements to the respective development documents. This is fully in line with 
ISO 26262 since it demands that “the origin, realization and proof for a requirement are clearly 
described in the documentation” of a system. A requirement is a condition or an ability which shall 
be fulfilled by the system. The origin of a requirement is a rationale why this requirement has been 
elicited for the system. The realization demonstrates how/where the requirement is implemented in 
the final system. A proof for a requirement means that it should be demonstrated that the 
requirement has an origin and that it is implemented, in other words, that the requirement is 
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traceable across all development documents in both directions, forwards and backwards. The 
documents comprise the hazards possible, the safety goals, the safety requirements, design 
elements, and implementation elements, plus associated review documents. 

As shown in the previous figure, the “product is safe”-branch is decomposed into a traceability sub-
goal that is split into various traceability claims, i.e., “origin of safety requirements documented”, 
“safety requirements realized”, and “proof of safety requirements”. This last goal is decomposed 
into two sub-goals, “safety requirements validated” and “safety requirements satisfied” which can 
be traced to the respective documents that deal with those issues. The origin of a safety 
requirement can be demonstrated by backward traceability. Safety requirements are derived from 
hazards and safety goals. Every safety requirement should be linked to at least one safety goal, 
and every safety goal should be linked to a hazard. But also forward traceability is important, so 
that for every hazard, there is a safety goal and for every safety goal, there should be an 
associated safety requirement.  
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6 Changes proposed for compliance to ISO 26262  

This chapter introduces some example of methods and techniques that would need further 
analysis to be in conformance with the standard’s objectives and, at the same time, induces a 
critical thinking so that a safer system could be built. 

Method/technique Level of appliance Rationale 

Formal methods System / hardware / 
software 

Formal methods can be used to verify each of 
the possible adaptation situations the system 
could run into. 

Safety analysis System As a possible safety analysis, the combination 
of state-space and non-state-space model 
based techniques. 

STPA [Leveson 2012] System A New Hazard Analysis Technique has been 
used for a preliminary HARA analysis on 
different domains where complex interactions 
occur. However, its use on adaptive systems 
needs further research. 

Model-based development System It enables low cost, iterative investigation and 
early verification and validation being able to 
re-design before the real implementation is 
carried out. In the same way, the adaptation 
concept and its development could be not only 
verified but also evaluated and re-designed 
depending on the obtained results. 

Simulation System / Hardware / 
Software 

For functional behaviour verification
For fault injection for safety and dependability 
validation 

Table 5 Summary of methods/tools that need further analysis to be applied on adaptive systems 

6.1 Formal Methods 

The use of formal methods is widely spread across different safety standards. This term specifies 
the employment of mathematical techniques during the different phases of a product development 
(hardware and software) from requirement specification through development and verification. 
Some of those standards recommend formal methods, however, their use is not highly 
recommended and the do not appear in all the previous phases.  

Concerning ISO 26262, formal methods are used in order to prove the correctness of a system 
against the formal specification of its required behaviour [Exposito et al. 2011]. Yet they mostly 
appear always in the background only as recommended and after semi-formal notations (see 
Table 6). The possible reason for that is that as Storey [Storey 1999] stated, their use is not very 
simple. For this reason, formal methods are rarely applied throughout the whole development 
lifecycle. This means that while the use of formal specification is quite straightforward, the process 
of proving the equivalence of different stages of the design is a much specialised task requiring a 
high degree of mathematical ability.  



  

D3.3 Specification of ISO 26262 safety goals for self-adaptation scenarios  
 

50 
 

To be more precise, formal methods are referred as formal notation and formal verification during 
software and supporting processes parts of ISO 26262-8.  

 

 ISO 26262 Phase 
ASIL 

A B C D 

Formal notations 
6 

Notations for software architectural design + + + + 
Notations for software unit design + + + + 

8 Specifying safety requirements + + + + 

Formal 
verification 

6 

Methods for the verification of the software 
architectural design 

o o + + 

Methods for the verification of software unit 
design and implementation 

o o + + 

8 
Methods for the verification of safety 

requirements 
o + + + 

Table 6 Use of formal methods across ISO 26262 

As it can be seen in the previous table, no reference regarding hardware specification, design or 
verification can be found. Actually, only the ones related to hardware safety requirements are 
briefly described in ISO 26262-8. Especially, design, walk-through, safety analyses and simulation 
development by hardware prototyping are pointed out as possible hardware design verification 
techniques. Moreover, their usage is not even highly recommended for none of the exposed 
phases. 

As matter of fact, it would be interesting to consider its application not only to software unit and 
architectural design, but also to hardware design and verification. In consequence, it could be 
proved that a specific circuitry correctly meets its intended function avoiding and preventing faults 
to be introduced into a system.  

Even if formal verification is only recommended and not even highly recommended, for software 
unit and architectural design verification, we believe that techniques such as model checking could 
help avoiding and removing software systematic faults from blocks like SAPC adaption logic.  

To sum up, it would be a potential commitment to complete and promote what ISO 26262 
recommends with respect to recommendation levels and applied phases of formal methods.  Due 
to the fact that they can provide multiple benefits during specification, design and verification, it 
would be a good choice to make them a complementary choice to semi-formal methods. Thus we 
consider the standard should include a more accurate and less ambiguous definition with respect 
to the use of formal methods during hardware and software verification phases making its 
appliance highly recommended for the highest automotive safety integrity levels. 

The previous outcome has provided us with the opportunity to apply formal verification to the 
development, so that fault avoidance can be assured. At design time, we proposed the definition of 
a state machine to ensure that the algorithm is executing only the necessary logic for the 
adaptation phases, in which it currently resides.  

Moreover, non-functional properties, such as Worst-Case Execution Time (WCET), should be 
verified formally by a model checking approach. Also, we propose to simulate communications 
behaviour in early development stages.  
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6.2 Safety Analysis 

Standard methods like FMEA and FTA recommended by ISO 26262 are not directly applicable for 
adaptive systems. They try to find only cause-consequence relationships between component 
failures and system failures [Gudemann et al 2006]. Complementary/Extended techniques are 
required. 

 

Fig. 24 Classification of the safety analysis techniques 

The following table depicts a state of the art of the different safety analysis techniques regarding 
what is currently required and what it would be needed addressing adaptive systems. 

ISO 26262 current state ISO 26262 addressing adaptive systems 

Qualitative 
Methods 

FMEA, FTA, ETA 

Extension of the 
non-state-space 

model (state 
space + non-state 

space) 

FTA + Markov 
Dynamic Fault Tree 

Dynamic Reliability Block Diagrams 

Boolean Driven Markov Processes 

Quantitative 
Methods 

FME(D)A, FTA, ETA, 
Markov Models, Reliability 

Block Diagrams 

Stochastic Petri nets 
Adaptive Transition Systems 

State/Event Fault Tree (SEFT) 
Table 7 Safety analysis techniques 

As mentioned, new solutions would be required to perform safety analysis in an adequate manner 
in the context of adaptive systems. Some of the most important techniques are briefly defined 
below [Manno 2011]: 

1. Markov Chains [Kaiser et al. 2007]: a state machine whose transitions are labelled with 
transition rates, i.e. conditional probabilities that the transition to a given successor state 
occurs in the next small time interval, provided that the system is in the source state. 

2. FTA + Markov Chains: a popular tried and tested technique to model dynamic systems in 
the industry. The combination of both techniques could produce more reliable data. This 

State-Space 
Model 

Non State-
Space -Model 
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technique has high degree of appropriateness and easiness as they are easily 
understandable. [Mouaffo el al. 2013] 

3. DFT (Dynamic Fault Tree): extend the modelling capabilities of FTs and use a state-space 
based low level representation for the solution of the model. 

4. SEFT (Single Event Fault Tree) [Kaiser et al.,  2007]: Safety analysis combining elements 
from FTA and State-charts. Since it provides a clear understanding between state and 
event, this technique could take in account the adaptive behaviour the system could have. 
This is a clear difference compared to traditional fault trees or Component Fault Trees 
(CFT) [Essarel] in which fault trees are built based on failures of the component of a 
system. 

 

Fig. 25 Fire alarm component and watchdog component 

 
5. Dynamic Reliability Block Diagrams (DRBDs): inherit the features of RBD in reliability 

modelling such as simplicity, versatility and expressive power and extend the formalism 
allowing taking into account the system dynamics. To this end in DRBD each component 
can be in three different states: active, i.e., working, failed, i.e., not operational, and stand-
by, i.e., reliable but not available. DRBD extend the capabilities of DFTs because of the use 
of state-space models at the high level model. However, the statespace model is limited to 
a specific structure (only three states are admitted), thus their application is limited by the 
formalism itself. 

6. Boolean Driven Markov Process (BDMP): extends fault trees with two new objects: 
triggers and Markov chains. Triggers are used to widespread failures of basic events or 
gates across the tree. To this end triggers carry on a Boolean value that forces BEs to 
behave differently according to the value of the trigger. In fact, BEs may have two modes. 
These two modes are represented by two different Markov chains. Only one Markov chain 
can be active at any time and the one that is selected to be active depends on the value of 
the trigger related to the BE. Modelling capabilities of BDMP extend the ones of DFT in that 
is possible to use Petri nets as the leafs of the tree. 

7. Petri Nets: Petri nets are abstract formal methods, for the description and analysis of flow 
of information and control in concurrent systems 

8. Stochastic PNs (SPN) are timed PNs in which all the firing delays are exponentially 
distributed. The use of exponential distributions for the temporal specifications results in a 
PN that can be mapped on continuous-time Markov chains 
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9. Adaptive Transition Systems (ATS): it is an high level modelling formalism that provides 
a concise and compositional way to describe the behaviour of interdependent reactive 
systems with general time distributions. Non determinism can be included in the model as 
well. Different kind of synchronization procedures can be defined, too. In ATS different 
parts of the system are modelled by different transition systems that are said adaptive 
because they adapt to each other according to their relative evolution as time progresses. 

6.3 STPA: A New Hazard Analysis Technique 

Leveson [Leveson 2012] indicates that using the new causality model called Systems-Theoretic 
Accident Model and Processes (STAMP), changes the emphasis in system safety from preventing 
failures to enforcing behavioural safety constraints. Moreover, she suggests a new hazard analysis 
technique called STPA.  This method has been used for a preliminary HARA analysis on different 
domains where complex interactions occur. The main reason to include that is the fact that current 
hazard analysis techniques such as FTA, Event Tree Analysis and HAZOP do not take in account 
accident scenarios that encompass the entire accident process, not just the electromechanical 
components.  

As a result, it must be pointed out that the current way HARA is carried is not sufficient for adaptive 
systems; therefore ideas from what STPA would be a good solution. Fig. 26 depicts how control 
actions are included to the traditional analysis. 

 

Fig. 26 STPA inputs to HARA 

Even though, its use on adaptive systems is still quite ambiguous and it needs further research. 

6.4 Model-based development 

It enables low cost, iterative investigation and early verification and validation being able to re-
design before the real implementation is carried out. In the same way, the adaptation concept and 
its development could be not only verified but also evaluated and re-designed depending on the 
obtained results. 

Model-based development is only considered at software level within ISO 26262 Part 6 Annex B. 
This means that no references are defined neither at system or hardware level. Some guidelines 
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on how to apply model based design at different development phases would be very helpful. In 
case of the SAPC adaptation mechanism, the system level needs to be modelled as well. This is 
the only way to confirm that adaptation works as it is supposed to do. 

6.5 Simulation 

Implementing safety verification by simulation could be challenging for adaptive systems even if it 
poses as a really promising solution to achieve early safety verification. An expansion to traditional 
functional verification, the new fault injection and safety verification technologies are highly 
required during different phases of the ISO 26262 compliant product development.  Fault injection 
experiments have demonstrated as an effective approach for dependability validation and 
evaluation. 

Taking in account that the design holds software, it could be challenging to validate the 
safety/dependability of a system where many configurations are possible at a time. To get accurate 
results by simulation based fault injection, all the possible situations would need to be considered. 
Some of the most interesting approaches to this issue have been proposed by Benso and Di Carlo 
[Benso DiCarlo 2011] or Eghbal et al. [Eghbal et al. 2009]. They stated how running different 
workloads on the same microprocessor changes the observed results. SafeAdapt proposes to 
adapt running software depending on a set of configurations and operational situations. One of the 
major drawbacks of implementing this technique in this context is that all possible run time 
scenarios should be tested at design time to validate safety of the system by means of simulation-
based fault injection. This could deal to a time explosion problem.  

In the same way, the use of a virtual test driving or simulated vehicle would be beneficial in order to 
test the perceived vehicle dynamics; this will define the maximum time for SAPC to execute the 
adaptation, before the driver perceives the risk and the car is out of control. Thus it helps to 
evaluate and validate the expected fault tolerant time interval at vehicle level. This is especially 
important for defining the controllability of the vehicle during the adaptation. Furthermore, by 
defining the appropriate fault models and testing experiments, it would be possible to validate both 
the Functional Safety Concept and the HARA of the system. 

Additionally, Hardware-in-the-Loop (HiL) tests should be executed on a test bench to verify the 
SAPC functional performance of the adaptation, which ensures that the adaptation behaviour after 
the software deployment in the real system is the same as expected.  

6.6 Outlook 

It is planned to conduct a specific review of the requirements at the end of the project after fulfilling 
development and design work and after the implementation in the demonstrator is completed 
during the evaluation period. The idea is to check for safety related requirements and their relation 
to ISO 26262. The approach in SafeAdapt is that in a first instance the safety related requirements 
will be identified by a review of the requirements document D2.2.  

In a second step, these requirements shall be brought into connection with ISO 26262. In case this 
works for a specific requirement,  ISO 26262 is considered sufficient w.r.t. such requirements and it 
is assumed that the other way round, namely looking at ISO 26262 and base the definition of 
requirements directly on the ISO would also work sufficiently. If not, a defect or deficit will be 
identified. In SafeAdapt not necessarily all requirements were defined according to such approach 
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since the work content is also a continuation of work and results conducted and achieved in other 
projects and even for different domains than the automotive domain targeted in SafeAdapt. The 
good side of allowing this approach is that it is thus possible to identify potential “holes“ and deficits 
in ISO 26262, that would not have been visible when strictly following the ISO 26262 standard, 
only during defining requirements. Within the conduct of the SafeCer and the Safe EC Projects, 
one of the achievements was that several deficits were detected within ISO 26262 in case one 
looks at the stringent domain of highly automated and autonomous driving sector and its very strict 
safety mechanisms needed. Thus SafeAdapt borrowed ideas and concepts from other industrial 
domains, such as the aerospace domain, using parts of their approaches and basic philosophies. 
Some of the communication and reconfiguration mechanisms and philosophies behind the ideas 
used in the SAPC were derived from concepts used in the aerospace domain such as the 
reconfiguration approach selected.  

The idea to make suggestions for the ISO 26262 enhancement can then be based on a final 
evaluation of the requirements and if they have been implemented successfully within the 
SafeAdapt project. By checking if ISO 26262 also has foreseen their definition and if so, if the 
approaches defined in ISO 26262 are sufficient and exhausting to cover the issue under 
consideration for the specific requirement such study can lead to the desired result. Thus the 
SafeAdapt team expects to be able to derive valuable examples from the SafeAdapt work at the 
end of the project and under consideration of the implementations made in order to point at specific 
areas of ISO 26262 that might need adaptation or enhancement to further guarantee sufficient 
measures being built-into this standard referring to safety relevant application. 
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7 Conclusions 

As defined at the beginning of the document, different aims have been achieved along this 
deliverable. 

On the one hand, the HARA of some vehicle functions has been presented together with the HARA 
of the adaptation process. This second step has been used to derive the corresponding adaptation 
safety goals. At the same time, a sophisticated functional safety concept has been highlighted so 
all the hazards can be overcome. Thereby, the SAPC is able to handle different adaptation 
scenarios in a safe way. This follows the direction of creating functional safety concepts that 
provide fail-operational behaviour at system level for individual functions and in terms of 
autonomous driving. Even though, this last point is not the main goal in SafeAdapt project. 

Moreover, we have introduced how a safety case can be constructed based on the goal structuring 
notation that proposes to create a defensible argument of goals that are decomposed recursively 
into subgoals until a subgoal can be proven by evidence. The evidence is provided by documents 
addressing the safety issues. The standard prescribes that part of the safety case should 
demonstrate that the origin, realization and proof for every requirement is clearly documented. In 
other words, all requirements should be traceable to their respective implementations (forward and 
backward). It is a method to show how to proof the safety requirements have been realized and 
validated. 

On the other hand, in order to promote ISO 26262 compliant adaptive systems, the main 
challenges have been identified. Due to the immaturity of some of the aspects and the no 
agreement of the responses, it has not been possible to come up with a clear and common 
vision/outcome of all of them. However, some of them have been further discussed proposing 
several contributions to the current status of the standard. It has to be pointed out that some of 
them have been more deeply analysed, whereas others, such as STPA, have been introduced but 
not been specified in detail. We believe this work is a good starting point for further research. This 
future work should consist of trying to close the gap in those aspects. This means that much more 
effort from both industry and research community should be expended when addressing ISO 
26262 compliant adaptive systems.  
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List of Abbreviations 

 

Abbreviation Definition 
AGG Aggregate 
ASIL Automotive Safety Integrity Level 
CCC central ICT computing core 
CDD Complex Device Driver 
CSCC (or Core Node) central ICT sub computing cores  
DC Diagnostic Coverage 
ECU Electronic Control Unit 
E/E Electrical or/and Electronics 
FTTI Fault Tolerant Time Interval 
GSN Global Structuring Notation 
GW Gateway 
HARA Hazard and Risk Analysis 
HiL Hardware-in-the-Loop
HSI Hardware-Software Interface 
HW Hardware 
HV Health Vector 
FEV Fully Electric Vehicles 
FTA Fault Tree Analysis 
FMEA Failure Mode and Effects Analysis 
GW Gateway 
HARA Hazard and Risk Analysis 

ICT 

Information and Communication Technology 
We consider a vehicle‘s ICT, which contains 
 [1..2] low-voltage power distribution networks 
 [1] high voltage power distribution networks 
 [1] central ICT computing core (CCC) 
 [1..3] central ICT sub computing cores (Core Nodes or CSCC) that are de-
livered from  DELPHI, SIE 
 [1..N] aggregates (AGG) / network nodes besides the ICT computing core 
(CCC) which (a) provide data and/ or (b) receive commands from the CCC. 
 [0..R] gateways (GW) to interlink different communication links which are 
design using different communication technologies (CAN, FlexRay, Eth, …)
 [1] central safe adaptation platform core (SAPC) 
 [1..2] safe adaptation sub platform cores (SASPC) which are implemented 
within each central ICT sub computing cores that are delivered from 
DELPHI, SIE 
 [1..M] automotive functions that are realized via the ICT (and considered 
within the HARA) 
 [1..K] applications, that are implemented on the CCC 
 [1..L] applications, that are implemented on an aggregate AGG 
 [1..X] communication links 

re-allocation 
Re-allocation contains the installation of binaries on a vehicle control-
computer including the configuration of the resource-management within the 
OS and the middleware. 

re-activation 

Re-Activation does not include the reassignment of resources This aspect is
considered within the re-allocation. Re-Activation just describes the activa-
tion and passivation of applications within the schedule (means switching on
and off of applications). 

SAPC Safe Adaptation Platform Core 
SASPC Safe Adaptation Sub Platform Cores 
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SEooC Safety Element Out Of Context 
STAMP Systems-Theoretic Accident Model and Processes 
SW Software 
VCC/ vehicle control-
computer Electronic control-computer within domain-model 
WD Watchdog 
 

 


