

Project acronym: SafeAdapt

Project title: Safe Adaptive Software for Fully Electric
Vehicles

Grant Agreement number: 608945

Coordinator: Dr.-Ing. Dirk Eilers

Funding Scheme: FP7-2013-ICT-GC

Deliverable 4.1

Concept for Modelling Safe Adaptive System Behaviour

Due date of deliverable: 30th June 2015

Actual submission Date: 01st July 2015

Lead beneficiary for this deliverable: CEA

Dissemination level

PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

The research leading to these results has received funding from the European Community's Seventh
Framework Programme (FP7/2007-2013)

This document contains information which is proprietary to the members of the SafeAdapt consortium.
Neither this document nor the information contained herein shall be used, duplicated or communicated by
any means to any third party, in whole or in parts, except with prior written consent of the members of the

SafeAdapt consortium.

D4.1 Concept for modelling safe adaptive system behaviour

Document Information

Title Concept for modelling safe adaptive system behaviour

Creator CEA: Ansgar Radermacher, Önder Gürcan

Description This document describes the modelling of safe adaptive system
behaviour for the SafeAdapt project.

Publisher CEA

Contributors Tecnalia: Alejandra Ruiz, Mª Carmen Palacios, Maite Álvarez

ESK: Alexander Stante, Dulcineia Oliveira da Penha, Gereon
Weiss

Ficosa: Andrea Saccagno (Review)

Duracar: Ken Lam (Review)

Language en-GB

Creation date 05/01/15

Version number 0.7

Version date 23/06/15

Audience internal

 public

 restricted

D4.1 Concept for modelling safe adaptive system behaviour

Table of Contents

List of Figures 4
List of Tables 5
Glossary 6
Executive Summary 7
1 Introduction 8

1.1 Document scope 8
1.2 Document outline 8

2 Classification of adaptive systems 9
3 Modelling Requirements 11
4 Related Work 12

4.1 Feature modelling in EAST-ADL 12
4.2 DiVA 13
4.3 DySCAS 13
4.4 Design patterns 14
4.5 Summary and conclusions 14

5 Modelling of Adaptation 16

5.1 Anticipated adaptations – predefined configurations 17

5.1.1 Cluster definition for modelling degraded functionality 19

5.2 Triggers, conditions and actions 21
5.3 Fault Tolerance 22

5.3.1 Fault tolerance patterns 23

5.4 Modelling design patterns 25
5.5 Modelling of constraints 27

5.5.1 Modelling allocation constraints 27
5.5.2 Modelling of resource constraints 27
5.5.3 Modelling of timing constraints 27
5.5.4 Modelling of adaptation constraints 27
5.5.5 Constraint evaluation 28

6 Models@runtime 29
7 Validation of Safe Adaptive System Behaviour 31
8 Summary 33
9 Bibliography 34

D4.1 Concept for modelling safe adaptive system behaviour

List of Figures

Figure 1: Hierarchy of self-X properties (from [4]) ... 9
Figure 2: Feature tree (l) and configuration of this tree (r) – [source EAST-ADL variability] 12
Figure 3: Configuration of feature tree .. 13
Figure 4 : Different configurations ... 18
Figure 5: Cluster modelling in case of an automatic cruise control ... 19
Figure 6: Overview of an UML-based profile for the degradation concept 20
Figure 7: DegradationMode for modelling system degradation .. 20
Figure 8: Different ways to model fault tolerance (from D3.1, [Salewski et.al 2008]) 22
Figure 9: Model of passive fault-tolerance pattern with diversification .. 25
Figure 10: Modelling of a design pattern – identifying roles and applying constraints 25
Figure 11: EAST-ADL2 model describing the failure propagation in a hot standby system [13]..... 26
Figure 12: Self-X profile, static part ... 29

D4.1 Concept for modelling safe adaptive system behaviour

List of Tables

Table 1: Requirements for modelling adaptability ... 11
Table 2: SAPC fault causes and associated remedies ... 23

D4.1 Concept for modelling safe adaptive system behaviour

Glossary

Term Definition

Configuration A configuration is a set of software component (instances) along with their
parameter settings and allocation to execution resources which in turn are
executing on a specific ECU. Distinction between system wide configuration and
projection on single ECU.

EAST-ADL Automotive modelling language; exists in form of a dedicated language as well
as a UML profile. Contains sub-profiles for different issues, e.g. variability and
timing.

ECU Electronic computation unit

MARTE UML profile dedicated for “Modeling and Analysis for real-time and embedded
systems”, contains several sub-profiles and a generic value extensions allowing
for value and type tuples

model@runtime Projection of the design model (including the adaptation issues), used by the
safe adaptation core to execute reconfigurations

Quiescent state States in which adaptations may be safely performed

SAPC Safe Adaptation Platform Core – A piece of software instantiated on every core
node to control the local runtime reconfiguration

TIMMO Timing extensions of EAST-ADL

UML Unified modeling language

D4.1 Concept for modelling safe adaptive system behaviour

Executive Summary

This document describes the concept for modelling safe adaptive system behaviour. This means
that the model provides information that allows the safe adaptation core to execute the adaptation
at runtime in a way that assures the requirements with respect to timeliness, resource constraints
and safety.

Different modelling approaches are chosen depending on nature of an adaptation and the criticality
of the affected components, i.e. there is no “one mechanism fits all” approach. The main reason is
to achieve the objective of scalability (avoid combinatorial explosion) and that subsystems of
different criticality have different requirements with respect to off-line validation.

Besides the modelling itself, the document describes tooling aspects, i.e. how tools support the
modelling and which artefacts can be generated from the adaptation model, notably the information
required by the safe adaptation core. This information is a projection of the adaptation modelled at
design time and is also denoted as a model@runtime.

D4.1 Concept for modelling safe adaptive system behaviour

1 Introduction

This document describes the concept for modelling safe adaptive system behaviour. The model
describes how the system will react to events such as faults, environmental conditions or the wish
to integrate third party components.

The modelling is specified as an additional and complementary aspect of the system model which
itself is modelled using UML in combination with the EAST-ADL profile. EAST-ADL already
provides a way to specify timing constraints, including end-to-end deadlines.

1.1 Document scope

The document describes how adaptation is modelled at design time, which artefacts are generated
from the design model and how tools support this process. The document is intended for system
architects that need to define adaptation conditions and constraints as well as implementers of the
runtime mechanisms (D3.1 – Concept for Enforcing Safe Adaptation during Runtime).

1.2 Document outline

The document is structured as follows. In the next section, we introduce the requirements for
modelling adaptation, for instance scalability, the possibility to express allocation constraints and
so on. The next session is the main part of this deliverable. It describes how adaptation is actually
modelled and classifies different ways of modelling adaptation. The last section describes a model
at runtime, i.e. the runtime artefacts of the modelling.

D4.1 Concept for modelling safe adaptive system behaviour

2 Classification of adaptive systems

In this section, we classify safe adaptive systems according to the literature. In the sequel, we
consider in particular self-adaptive systems, since the systems within a car have to make
autonomous reconfiguration decisions (which is an important difference between adaptive an self-
adaptive systems). Thus, we start with definitions from literature what self-adaptive systems are.
Laddaga [3] defines these as

 “Self-adaptive software evaluates its own behaviour and changes its behaviour when the
evaluation indicates that the system is not accomplishing what is intended to do, or when better
functionality or performance is possible […] This implies that the software has multiple ways of
accomplishing its purpose and has enough knowledge of its construction to make effective
changes at runtime.”

The last part of the quotation above refers to what is today denoted as model@runtime. i.e.
additional information about the software (its components) that are running on a system.

Self-adaptive systems have multiple self-X properties, shown in the overview article from Salehie
and Tahvildari [4]. Figure 1 shows the hierarchy as proposed in this article. At the basic level, a
self-adaptive system needs to be aware of itself (its structure) and its context / environment. This
enables properties such as self-optimisation and self-healing.

In the context of SafeAdapt, we are interested primarily in the self-healing (i.e. increase robustness
with respect to faults, self-protecting is more related to security instead of safety) and self-
optimising with respect to energy consumption.

Figure 1: Hierarchy of self-X properties (from [4])

Adaptation actions can be further classified with respect to the time at which they are executed.
There is a distinction between reactive and proactive actions. In case of the former, the system
performs an action as a direct reaction to a change. In case of the latter, the system adaptation is
based on a prediction of (environmental) changes. Thus, it may eventually reduce the number of
adaptations or react before a (critical) event occurs. An example in SafeAdapt is the driver-

D4.1 Concept for modelling safe adaptive system behaviour

drowsiness detection – it predicts a loss of attention and executes counter measures. Eventually, it
may be possible to predict hardware failures based on the number of previous, temporary faults.

The time dimension has an additional aspect: at which moment in the system lifetime is a
reconfiguration possible? The literature distinguishes between design-time, configuration-time
(during start-up phase), in a safe state1 (e.g. when stopped at a traffic light) or at a arbitrary point
In the context of SafeAdapt, we target re-configuration at runtime – whereas the modelling of
adaptations could be partly at design-time, as shown later.

Another classification is whether the adaptation action is an optimization or a corrective adaptation,
i.e. an action that masks a fault. In the context of SafeAdapt, we target both kinds of adaptations.

Optimisation use cases are given in deliverable 5.1 – “Evaluation Methodology for the SafeAdapt
results”: (1) the shutdown of auxiliary systems if the battery level drops below 35% and (2) the
energy recuperation by using electrical brakes whenever possible. A use case similar to the former
the minimization of the energy consumption when the system is shut-off but needs to retain a few
functions (such as keyless entry).

1 Note that the term safe-state is also used in the work of runtime reconfiguration: it denotes a state in which

no requests are active therefore enabling consistency during reconfiguration.

D4.1 Concept for modelling safe adaptive system behaviour

3 Modelling Requirements

The requirements for modelling adaptability comprise several aspects, notably which information
is modelled and how this information is stored. Additional aspects are the usability and efficiency
to create and store this information. A part of the information has been captured in deliverable D2.3
(requirements of the design process and tools), although the latter focusses more on the individual
requirements of the tools.

Table 1 shows requirements extracted from D2.3:

ID Category
Sub

Category
Description Conflicts

CEA-001 Functional System Modelling of system architecture in EAST-
ADL. Use Timing extensions of EAST-ADL

CEA-002 Non-
Functional

System Modelling of non-functional requirements
using UML/MARTE

CEA-003 Functional System Modelling of global modes, but respect
CEA-004

CEA-004

CEA-004 Non-
Functional

Efficiency Scalability – Avoid combinatorial explosion,
i.e. avoid enumerating all possible system
configurations in detail.

CEA-005 Non-
Functional

Tools Depending on criticality, we must be able to
assure schedulability even during
reconfiguration at all times (offline-analysis)
possible conflict: doing schedulability
analysis requires detailed configuration
information and validation of all possible
transition

CEA-004

CEA-006 None Process Respect tool flow picture from D4.2
 System Modelling of adaptation is a separate issue

that should be orthogonal to system
definition

Table 1: Requirements for modelling adaptability

There are two particular requirements that are important in the context of modelling adaptability:

The modelling must be scalable (CEA-004). This means that the size of the adaptability model
may only grow linear or slightly faster (e.g. n*log(n)) with the system size. This requirement is
important since it enables developers to specify the adaptation model in an efficient way, and since
it also limits the storage requirements of the adaptation information in the running system.

Critical components or subsystems require that all resource and timing requirements are met.
While the validation of a new configuration after and during adaptation is in principle possible
based on information at runtime, the results could not be guaranteed and the delay for the
calculation could be important. Therefore, it is necessary to pre-calculate some information (CEA-
005), implying a potential conflict with the requirements to be scalable.

The specification of timing constraints, including end-to-end deadlines is done using the TIMMO
extension of EAST-ADL.

D4.1 Concept for modelling safe adaptive system behaviour

4 Related Work

In this section, we list related work in the context of modelling adaptation.

4.1 Feature modelling in EAST-ADL

EAST-ADL offers the possibility to model at multiple levels of abstraction. The most abstract level
is the feature level, in which a desired functionality is represented by a feature. Features may be
structured in a tree-like way, including feature groups with cardinalities. The main idea is that
different variants of a car differ in the sense that some features are present in a certain variant
while others are not. Often a choice needs to be made. On the feature tree level, such a choice is
represented by a so-called feature group offering an m out-of n choice. A configuration represents
a selection of features for a product that is going to be built. Figure 2 shows a feature and a
concrete configuration. In the configuration, the option ClimateCtrl is active, with respect to the
wiper the mutual choice for an advanced wiper has been chosen but there is no rain sensor.
Although the feature model is originally intended for making design time choices, it could be
interesting to allow for adaptations in the sense of re-evaluating these choices at runtime.

Figure 2: Feature tree (l) and configuration of this tree (r) – [source EAST-ADL variability]

The functional analysis architecture represents a set of components that realize a feature. These
components already have ports and are assembled as parts within a system representing the
analysis architecture

The detailed design architecture represents the architecture of the system that is deployed on the
hardware. There is no instance modelling in EAST-ADL (most components exist exactly once, the
cardinality of parts controls the number of instances). Figure 3 shows a feature tree at the design
level, the alternative choice between two options of a wiper control results in two optional
components. One of these could be activated at runtime.

D4.1 Concept for modelling safe adaptive system behaviour

Figure 3: Configuration of feature tree

Thus, the combination of feature trees and configurations is a part of the adaption modelling which
may be used to make decisions at runtime, i.e. to toggle at runtime between configurations.

The former remains on the feature level, the latter is done on the design level.

4.2 DiVA

The DiVA project [21] focuses on dynamic variability in complex systems following a component-
based approach, close to Fractal. The actual configurations of the application are built at runtime,
based on Aspect-Oriented Modelling (AOM) and models at runtime. A main objective of the DiVA
approach is to model adaptive systems without having to enumerate all possible configurations
statically. The application is modelled using a base model, which contains the common
functionalities and a set of variant models, which can be composed with the base model. An
adaptation model specifies which variants should be selected at runtime according to the
adaptation rules and the current context of the executing system. However, the DiVA approach is
not targeting distributed embedded systems, e.g. due to the large resource consumption overhead
at runtime.

4.3 DySCAS

The DySCAS (Dynamically Self-Configuring Automotive Systems) project [18][19] focused on
developing a middleware enabling dynamic self-configuration of automotive software systems.
Adaptation of the system is realized through decision points, at which a policy has to be evaluated.
Policy evaluation at runtime poses a significant overhead.

A main use case is the addition of a new device. [20] describes a UML based modelling approach
for the DySCAS reference architecture, consisting of analysis and design of application and
middleware functions. The DySCAS reference architecture contains an Information Model which is

D4.1 Concept for modelling safe adaptive system behaviour

interesting in the context of modelling adaptability, as it describes the architectural variability of
configurations.

4.4 Design patterns

The concept of design patterns [12] became one of the widely used and universal approaches for
describing and documenting recurring solutions for design problems. The idea of design patterns
was original proposed by the architect Christopher Alexander [6] who wrote several books on the
field of urban planning and building construction. He defined a design pattern as a construct that
expresses a relation between three parts: context, problem and solution (what is called three-part
rule). Ever since, this concept has been applied to many different domains, including hardware and
software design.

In software domain, design patterns became popular in software architecture and development
after the success of the book Design Patterns: Element of Reusable Object-Oriented Software by
Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides [9] frequently referred to as the
Gang of Four (GoF). They defined a design pattern as “Description of communicating objects and
classes that are customized to solve a general design problem in a particular context”. This book,
which includes a collection of patterns for object-oriented software design, was not the first effort to
use the concept of design pattern in software; however, it is considered as the foundation for
design patterns in software construction.

Like in software development, design patterns have been also adapted for hardware design to
provide implementation-independent and abstract views for recurring hardware design solutions.
The more general benefit of using design pattern is to improve the hardware development process
through importing the advantages of object oriented modelling techniques (see e.g. [7][8][10][11]).

In general, we can summarize a design pattern as an abstract representation for how to solve a
general design problem that occurs over and over in many applications. The main purpose of
design patterns is to support and help designers and system architects to choose a suitable
solution for a recurring design problem among available collection of successful solutions.
Moreover, design patterns can simplify communication between practitioners and provide a good
way for documentation of proven design techniques.

4.5 Summary and conclusions

We have shown existing approaches to deal with variability and adaptability. Although the
variability modelling on the feature level is primarily intended for the static configuration of a
system, it is useful for runtime adaptations as well. In particular, it can capture several (mutually
exclusive) realization options of a function, which we will use in the context of degraded functions
as shown later.

The projects DiVA and DySCAS use and evaluate models at runtime in order to execute
autonomous adaptation decisions. This approach is also chosen in SafeAdapt: runtime decisions
are executed by the safe adaptation core (SAPC) based on model information. The main difference
is that SafeAdapt needs to make some decisions at design time in order to guarantee the offline
validation of safety-critical functions. SafeAdapt will take real-time considerations into account (on

D4.1 Concept for modelling safe adaptive system behaviour

the one hand by explicitly modelling timing constraints, on the other by taking care of performance
aspects in the runtime representation of these models)

Design patterns are a general way to associate design problems with a well-known solution. We
will primarily use the patterns in the context of fault-tolerance patterns in section 5.3.

D4.1 Concept for modelling safe adaptive system behaviour

5 Modelling of Adaptation

Before we can introduce different ways of modelling adaptation, we want to introduce the relevant
terminology.

Definition 1: a system-configuration defines a set of components, along with their interconnections
and their allocation to tasks which in turn are allocated to a hardware node (ECU).

Definition 2: A node-configuration is a subset of a system-configuration. It consists of the tasks for
a certain hardware node and the components allocated to it.

Please note that an ECU needs to know at least its node-configuration; it is currently not clear
whether a single ECU knows the complete system configuration.

Definition 3: a configuration is valid, if it respects resource and timing constraints. The latter can be
verified by means of a schedulability analysis. A configuration may be accompanied by a
scheduling plan that defines task priorities (in case of fixed priority scheduling). This definition can
be applied to system and node configurations.

Definition 4: An adaptation (or reconfiguration) is the transition from one configuration to another.
This transition may be triggered by different events ranging from optimisations to failures.

Definition 5: The health vector (see D3.1) provides status information about current configuration, it
may trigger adaptation (or reconfiguration).

The modelling of adaptations as defined above is to find a suitable level of abstraction to define
system-configurations as well as the transitions between these. Node configurations can be
derived automatically from system configurations.

In the sequel, we define different ways to model adaptation at different abstraction levels, i.e.
requiring more (or less) detailed information from the developer. In this section, we only have a
brief description of each modelling aspect which is discussed in more detail in its own section
within this chapter.

The modelling of adaptation is often based on rules or policies that consist of a triple (event,
condition, action), denoted as ECA: if the event is fired, the associated condition is evaluated. If the
result is true, the associated (reconfiguration-) action is executed. Rule based adaptation is
frequently used, for instance used in the robots domain.

1. Define configurations and transitions explicitly. If this approach is chosen, a configuration of
the system is defined in detail. An anticipated event, e.g. the failure of an ECU or a low-
battery condition is used as trigger for the move towards a new configuration. Defining a
configuration explicitly within the model does not mean that the developer has to provide

D4.1 Concept for modelling safe adaptive system behaviour

this information. For instance, the allocation to a task (and the configuration of this task) is
the result of schedulability analysis.

A particular case of anticipated events are classical fault tolerance mechanisms: critical
components need to be replicated to achieve a required availability. By defining a (passive)
replication strategy, we define implicitly a set of configurations in which some replicas are
active while others are not (and some used degraded variants of a rudimentary
functionality). Fault detection is a trigger for transitions. The likelihood of a failure of a
replica (or the ECU hosting it) is explicitly modelled in order to derive a suitable number of
replicas. Thus, fault-tolerance is also within the class of anticipated fault recovery.

2. Define constraints. Constraints impose restrictions on configurations and on reconfiguration
actions. Constraints are typically combined with explicit configurations, since they reduce
the search space of valid configurations. The latter is important in the case that the system
has to handle a non-anticipated failure and needs to calculate a new configuration at
runtime. Constraints can be applied to difference aspects of the system, for instance to
timeliness (timing constraints) or memory consumption (resource constraints).

Adaptation execution needs an underlying runtime mechanism, in case of SafeAdapt, the safe
adaptation core as identified in D3.1. The adaptation core supports a set of runtime mechanisms,
notably the activation of a stored configuration. Its use imposes implementation restrictions, for
instance the number of pre-validated configuration that can be stored. Thus, it may be possible that
a failure has been anticipated, but a predefined configuration reacting to this fault is not stored and
the failures must therefore be handled like an unanticipated failure. The decision whether to use a
stored configuration needs to take the importance of events into account, e.g. a combination of
likelihood and safety impact. The use of a suitable mechanism thus becomes a derived
information.

5.1 Anticipated adaptations – predefined configurations

Highly critical parts of the system must meet their availability requirements as well as resource and
timing constraints. The latter must also hold while the system is executing a reconfiguration.
Certification requires that the system design guarantees these properties by means of a validation
at design time. Therefore, it is not feasible to calculate a new configuration at runtime, but all
possible configurations and during transitions between these need to be validated.

Event-condition-action rules can describe the activation of a new configuration, i.e. the action part
of the ECA rule activates a certain configuration. The rules correspond naturally to transitions in a
state machine, since the latter have a trigger (event), a guard (condition) and an effect (action).
The main difference is that the firing of a transition depends on the source state (corresponding to
a configuration) whereas the ECA rules can always fire and would need a suitable filtering
condition.

The number of possible configurations can potentially grow quickly, since each additional
component can be active or inactive in a certain configuration and allocated to different ECUs.
There are several ways to reduce the combinatorial explosion.

1. Restrict predefined configurations to single hardware failures. This means that the case of a
second failure after a first is not part of the set of predefined configurations.

D4.1 Concept for modelling safe adaptive system behaviour

2. Restrict predefined configurations to critical subsystems which in turn requires that the
operating system isolates subsystems of different criticality from each other to avoid mutual
influences, as done by partitioned operating systems used in the avionics domain.
However, this solution has two disadvantages. The first is that a SafeAdapt solution needs
to work in the context of the commonly used operating systems in the automotive domain
(AUTOSAR-OS based on OSEK/VDX) that do not support partitions. The second is that the
assignment of fixed time budgets to partitions reduces overall effectiveness (difficult to tune
budget), in particular for a large number of partitions.

3. Hierarchical approach. Model global modes and certain failure situations. Possible sub-
states can be explicitly modelled. In such an approach, the modelling effort remains
scalable while the number of different fine-grained configurations (as well as transitions
between these) may explode. While the latter is costly, if may be acceptable, since it can be
largely automated.

4. Define additional constraints that reduce the number of possible configurations. For
instance, allocation constraints (e.g. component may only be co-located) and dependencies
exclude configuration from the search space. Constraint modelling is also important for
unplanned adaptations, as it allows for online validations of possible configurations.

Figure 4 : Different configurations

Figure 4 shows an example of a state machine that represents a combination of the strategies
(1) and (3). It considers three degraded states corresponding to the failure of ECU_A, ECU_B
and ECU_C respectively. There is an additional low battery state/configuration which
reconfigures the system to save energy (switching off auxiliary components with a relatively
high energy consumption, as outlined in D5.1). The degraded modes do not support a specific
low-battery state, as we would have a specific sub-state for each of them. The nominal state
has nested sub-states corresponding to the driving situation. The use of the state-machines
hierarchy avoids to specify multiple triggers to the degraded or low-battery states.

D4.1 Concept for modelling safe adaptive system behaviour

5.1.1 Cluster definition for modelling degraded functionality

Some automotive functions can offer different degrees of functionality depending on the availability
of sensors or the presence of failures. Figure 5 shows an example of an automatic cruise control
function that comes in three different variants. A fully working cruise speed, a nominal ACC and a
variant called Speed Control. The coloured boxes enclose the components that are required by the
different variants. The complete cruise control requires all sensors, whereas the simple variant
requires a single component. The different variants can be captured with the EAST-ADL variability
modelling shown in the right-hand side of the figure: instead of making a choice at system
configuration time, the choice depends on the availability (at runtime) of the sensors.

Figure 5: Cluster modelling in case of an automatic cruise control

The full-speed ACC depends on the functionality of the limited-speed ACC and two Short Range
Radars (SRR) and both depends on the functionality of the traditional cruise control and Long
Range Radar (LRR). These can be seen as a case in which a limited or degraded functionality can
be offered even after a malfunction in parts of the system.

To model the degradation we propose to cluster software functions (e.g. EAST-ADL
FunctionPrototype) in a FunctionCluster. This FunctionCluster represents a set of software
functions which are necessary to deliver the functionality of the cluster. In the case of the example
in Figure 5, FunctionClusters for the full-speed ACC, limited-speed ACC and Cruise Control can be
modelled (illustrated by the coloured boxes). An overview of all elements in our proposal is shown
in Figure 6 in form of a UML profile. During prototyping, we will evaluate which of the stereotypes
are required and which can eventually be based on existing mechanism in EAST-ADL.

ACC

Full speed
ACC

Speed
Control

Normal
ACC

SRR

SRR

LRR ACC

Speed-
Control

D4.1 Concept for modelling safe adaptive system behaviour

Figure 6: Overview of an UML-based profile for the degradation concept

To model the degradation between the FunctionClusters we propose to introduce a
DegradationMode which refers to a FunctionCluster and also to a more degraded
DegradationMode, as shown in Figure 7. The semantic is as follows: If a function in a
FunctionCluster fails, the system can switch to a degraded mode to deliver at least limited
functionality.

Figure 7: DegradationMode for modelling system degradation

We also extend the concept of clustering software functions to hardware. Therefore we introduce a
HardwareCluster analogously to the FunctionCluster. The semantic of the HardwareCluster is that
a cluster provides its functionality only if all hardware elements (e.g. EAST-ADL
HardwareFunctionPrototypes) are available (i.e. operating). We furthermore propose a
DynamicAllocation concept to provide a mechanism to model that a software function of a cluster
can be allocated to any hardware element of a HardwareCluster. During runtime the system
decides on which hardware element a software function is running. For some safety-critical
functionality it is prohibited to determine the allocation dynamically during runtime. In that case we
propose to model the static allocation of a FunctionCluster by referring the DegradationMode to a
StaticAllocation. These allocations would be determined and validated offline and the system is
only allowed to switch between statically validated allocations.

D4.1 Concept for modelling safe adaptive system behaviour

5.2 Triggers, conditions and actions

Adaptations can be triggered by several events. While the compensation of faults is very important
in the context of SafeAdapt, it does not represent the only kind of triggering event. In this section,
we list a set of possible triggers. We also add the associated conditions and actions. The resulting
triple (ECA rule) can be represented by state machines and may also be associated with a design
pattern, see section 5.4.

Event Node failure (replica failure?)
Condition
Action - if active: none (remaining replica is already active and its results are

immediately taken into account)
- if passive: activate replica

Post-Action Bring up new backup replica, i.e. execute a reconfiguration that re-establishes
the original number of replicas and enables an eventual compensation of
additional faults.

Event Sensor failure
Condition Condition: failed sensor is essential for correct component operation of a nominal

function (this information is available in model@runtime)
Action Activate degraded mode replica. See section 5.1.1 and 5.3.1.

Event Replica state change
Condition n-th change (objective: reduce traffic related to state changes)
Action Broadcast state-update message

Event Timer
Condition State has been modified
Action Broadcast state-update message

D4.1 Concept for modelling safe adaptive system behaviour

5.3 Fault Tolerance

Figure 8: Different ways to model fault tolerance (from D3.1, [Salewski et.al 2008])

Figure 8 shows a classification of several fault tolerance mechanisms, distinguishing four different
sectors. In the sequel, we will list each of the sectors briefly in the context of SafeAdapt.

1. Avoid SW faults: In the SafeAdapt project, we reduce the probability of software faults by
means of a well-designed design process according to the ISO26262 methodology.
Requirements are explicitly defined. The behaviour of software components is verified by
means of analysis mechanisms and through simulation. We do not further describe these
mechanisms in detail here, since they do not contribute to the modelling of adaptation.

2. Avoid HW faults: This aspect is not in the scope of the SafeAdapt project, no specific
hardware is developed. However, the lockstep mechanism allows failure

3. Tolerate SW faults: Fault tolerance patterns use a set of replicas that may or may not run in
parallel (see next section). The patterns provide the option to diversify the software, i.e. use
different implementations of certain functionality. In case of an active replication, faults can
be detected if there is a disagreement. However, in order to know which component is
defective, at least three replicas are required. In the context of SafeAdapt, diversification is
mainly done in form of using degraded components, i.e. components that provide less
accurate results, but require fewer resources and use a simpler calculation which is
therefore less likely to contain a software failure. Degraded components could be used to
determine a plausible interval in case of active replication. In the context of SafeAdapt,
degraded components are mainly used as backup components in a passive replication
pattern. On the feature level, degraded variants can be modelled with the variability

D4.1 Concept for modelling safe adaptive system behaviour

mechanism in EAST-ADL, function clusters may capture the different dependencies, as
shown in section 5.1.1.

4. Tolerate HW faults: The SafeAdapt hardware architecture enables a flexible routing of
sensor as well as actuator data to each ECU. In combination with fault tolerance patterns
and reconfiguration mechanisms, ECU failures can be tolerated. The lockstep mechanism
enables failure detection and isolation. Deliverable D3.2 lists the used mechanisms in
detail.

5.3.1 Fault tolerance patterns

Different kinds of faults have been classified in the Safe-Adapt deliverable D3.1, section 5.5
(Failure Detection, Classification & Remediation). The runtime uses a M.A.P.E-cycle (monitor,
analyze, plan, execute, see Figure 4 of D3.1), failures are detected in the analysis phase of the
M.A.P.E-cycle, implemented as part of the fault filter. Four different categories are identified.

SAPC fault cause
class

Remediation

Maskable
Transient

Hardware Error

Remediation is directly performed in hardware or platform
software. The SAPC remembers this occurrence in order to treat
the error as permanent if it occurs more often.

Hardware Partition
Error

Passivate partition and move application to other partition or
alternatively to other core node.

General Hardware
Error

Passivate core node and reactivate applications on other core
nodes.

Application Design
Fault

Passivate application (only QM) or use degraded variant

Table 2: SAPC fault causes and associated remedies

These faults can be captured by fault tolerance patterns. In the sequel, we list three different
patterns how fault tolerance can be achieved within a software architecture.

 Active with vote: n components are running in parallel. Results are voted, typically n must
be bigger or equal to three, otherwise it is not possible to tell who is “right”, if there is a
divergence. Due to its relatively high cost, the pattern is less important in the automotive
domain, but used in railways and avionics.

 Active without vote: n components are running in parallel. The result of one of the ECUs
(components may not run on the same ECU. Results are not compared, each ECU
performs regular self-tests and results are checked for validity.

 Passive: only one component is active at a given time. If the component detects that is fails
(or other ECUs detect the failure/absence of data), a backup component is activated. There
are different variants, how this backup component can be determined and whether other
components are affected by this activation.

D4.1 Concept for modelling safe adaptive system behaviour

o Statically assigned backup, no further changes of architecture. In case of critical
subsystems, the backup component must be known in order to validate in advance
that resources are available and timing constraints are met. The latter includes a
schedulability analysis of the configuration in which the backup component is active.
Since there are no further changes, it is possible to make a single schedulability
analysis assuming that original and backup are active at the same time, i.e.
reducing combinatorial explosion.

o Statically assigned backup with additional changes. In this case, the activation of
the backup component implies a further reconfiguration, e.g. relocate or deactivate
less critical components (in order to achieve resource constraints). In this case, a
separate schedulability analysis of the new configuration is required.

o Dynamically assign a backup component and eventually perform additional
changes.

All three variants of this patterns might be followed by a “repair action” that assures that
a further backup will be available in case of second failure. This additional
reconfiguration may be executed in a suitable delay after the first reconfiguration that
activated the original backup (less time critical, might be planned at runtime).

Active and passive patterns can be used in combination with diversified algorithms, i.e. the
software for each replica has been developed by different teams according to the same
specification. Diversification addresses the application (software) design fault possibility in the table
above. In the context of SafeAdapt, the diversified algorithm is typically degraded: (1) a simpler
computation that provides less accurate but “good enough” results, requiring less resources
(useful, since the overall number of resources is reduce after a hardware failure) or (2) a different
implementation that may compensate failed sensors or actuators. An example is a steer-by-wire
functionality based on individual braking/acceleration of the in-wheel motors on the left or right
hand side, respectively.

Active fault tolerance patterns do not require any state transfer. Thus, the switch-over time is
smaller compared to passive systems. In case of a voter, no reconfiguration at all is implied if one
of the replicas fails. In the absence of a vote, only a different output needs to be selected,
schedulability analysis already took into account that all replicas are running. Therefore, the
transition in case of a failure is not considered as a reconfiguration.

Thus, only the passive fault-tolerance patterns require a reconfiguration. A failure of the primary
component “only” implies the activation of a backup component. The activation of the backup-
component corresponds to the activation of a new configuration. In case of a hardware fault, the
main roles in the pattern are the hardware (and not the software) components. The link between
pattern and adaptation specification is that the pattern may be accompanied by a set of event-
condition-action rules – eventually in form of a state-machine. Thus, the application of the design
pattern implicitly defines adaptation rules. From a tooling viewpoint, it either implies that the system
architect does not have to specify specific transitions or that the consistency of explicit transitions
with the design pattern application could be verified.

It is also possible that the backup components represent alternative components that are activated
not only in case of a failure but due to other triggering events. In this case, a local state-machine
(or ECA rule) should capture the transition. This case might differ with respect to schedulability

D4.1 Concept for modelling safe adaptive system behaviour

analysis. Backup components will never run on the same ECU while alternative ones might do that.
Thus, we need to analyse each configuration (i.e. one with the normal component and one with the
alternative component) separately.

5.4 Modelling design patterns

Design patterns capture the combination of a problem and a solution in which the participants play
several roles. We propose to model this by defining a UML package that captures the problem,
solution and applicability in textual form (stereotyped UML comments) as shown in [22]. The roles
are explicitly modelled by means of a UML collaboration. The solution of a pattern consists of a
composite class that refines the roles of the collaboration by adding additional relations and
implementation artefacts (for instance a voter). Constraints can be defined either on the level of the
solution or collaboration.

The model of the passive fault-tolerance pattern with diversified replicas is shown in Figure 9. The
package applies the stereotype “SafetyPattern”, a specialization of the “Pattern” stereotype. The
screenshot shows four comments that contain textual descriptions. The solved problem is the
systematic risk related to software, i.e. the “application design fault” row in the table from D3.1.

Figure 9: Model of passive fault-tolerance pattern with diversification

Figure 10 shows how the modelled roles within the collaboration. Nominal and degraded roles are
identified. An allocation constraint is applied to the roles – they may not be allocated to the same
ECU.

Figure 10: Modelling of a design pattern – identifying roles and applying constraints

D4.1 Concept for modelling safe adaptive system behaviour

Figure 11 illustrates the resulting architecture, when the pattern is applied. Consider an execution
chain from F1 to F3 (to be exact from the parts that represent instances of F1, F2 and F3,
respectively). F2 is also a composite using two replicas with different implementations (F21 and
F22). In this example, the results of both replicas are fed into component F3 which is responsible
for making a selection.

The application of design patterns helps to define configurations, since they determine a set of
replicas (with an allocation constraint). This allocation of the replicas can be determined
automatically, eventually be means of a constraint solver. Also possible: specify required
availability (requirement), pattern determines number of required replicas.

Figure 11: EAST-ADL2 model describing the failure propagation in a hot standby system [13]

The event-condition-action rules shown in section 5.2 can be associated with a design pattern: if a
certain pattern is applied the runtime-adaptation-core executes the adaptation behaviour that is
specified in the rule for the roles within the pattern. Thus, the use of the design pattern implies a
known adaptation behaviour. This has the advantage that a developer does not need to specify
reconfiguration actions manually for the associated components.

D4.1 Concept for modelling safe adaptive system behaviour

5.5 Modelling of constraints

In order to verify that a configuration is valid, it is necessary to check a set of rules or constraints.
Constraints can apply to different aspects, for instance to the resource consumption, the timing,
allocation or adaptation. Some constraints must be met by all applications (e.g. timeliness) while
some are specific for an application (e.g. allocation constraints). The importance of constraints in
the context of adaptation is twofold: they are used to verify configurations and to create new valid
configurations automatically.

In the sequel, we discuss common constraints in embedded and real-time systems.

5.5.1 Modelling allocation constraints

An allocation constraint restricts the allocation of a component to a set of ECUs. Some
components can only run on certain ECUs, e.g. due to the processor architecture or the availability
of I/O signals or busses. Besides a direct constraint related to a specific ECU, it is common to have
restrictions that depend on the mutual allocation of components. In the context of replication
patterns, replicas should not run on the same ECU, i.e. to forbid co-localisation. For performance
reasons the contrary is often required as well: application components that exchange a large
amount of data, need to be co-located in order to meet deadlines.

5.5.2 Modelling of resource constraints

Application components require a certain amount of resources from the underlying platform, e.g. a
certain amount of RAM, OS resources such as tasks, timers or semaphores. The generic
constraint is that the requirements of the application must meet the capabilities of the platform.
Therefore, both, application requirements and capabilities need to be modelled. For the former, we
propose the use of the Self-X profile combined with EAST-ADL mechanisms. This profile describes
for instance the memory resoures required by a component and its (worst case) execution time. It
is the basis for creating a runtime model described in chapter 6.

For the latter the use of the hardware resource modelling part of MARTE, i.e. describe the
resources that are offered by the hardware.

5.5.3 Modelling of timing constraints

Timing constraints can be modelled in different UML extensions, notably the profiles MARTE and
EAST-ADL. In the context of this document, we will focus on specifying timing requires using the
latter, notably the TIMMO specification within EAST-ADL.

The validation of timing constraints includes the execution of schedulability analysis: a plan how to
applicate processor resources to the difference tasks within a system. The execution of such an
analysis is a non-linear problem, when executed at runtime, heuristics are used to obtain a (likely
sub-optimal) results in a short time frame.

5.5.4 Modelling of adaptation constraints

The adaptation is characterised by the transition from a source to a target configuration. Source
and target configuration must respect the constraints defined so far. Timing constraints must also
hold during the transition. In addition, specific adaptation constraints might explicitly forbid the
evolution of certain applications.

D4.1 Concept for modelling safe adaptive system behaviour

Constraints are both evaluated for anticipated and non-anticipated adaptations. This means that
constraint evaluation needs model information at runtime in order to verify a constraint. Examples
of non-anticipated adaptations include the addition of a new component not been known at design
time or failure scenarios that are not part of a predefined. It is also possible that a first failure could
be handled by a planned reconfiguration but a subsequent failure has not been anticipated (while
this is out of certification scope, it might be interesting to study this case).

Runtime decisions need to be taken for these non-anticipated adaptations and the runtime
decisions are guided by constraints available in the model at runtime.

5.5.5 Constraint evaluation

An orthogonal aspect is the evaluation of constraints. If configurations are pre-configured, they can
be completely evaluated offline or at runtime. The choice which algorithm is used can be derived
automatically based on security level, recovery time, likelihood, and space restriction. In
SafeAdapt, we will evaluate constraints at design time (offline) whenever possible and when
required for safety critical components.

D4.1 Concept for modelling safe adaptive system behaviour

6 Models@runtime

In order to execute reconfiguration decisions, the safe adaptation core needs to know (among
other information) which component runs on which ECU and how the components are
interconnected. It also needs to know how many resources are available on an ECU and the
resource consumption of each component. A part of this information is available in the runtime
model – a combination of a projection of the model that is used at design time and additional
information that can only be computed at runtime.

The information required information can be classified in the following way. Platform
information/capabilities are provided by a specific component representing the platform.

 Static information on component level including resource and timing requirements.

 Static information instance level: in principle same information as for the preceding bullet.
But this information is attached to an instance of a component, e.g. the required RAM is
information shared by all instances (i.e. on the component level), while a configured period
length or priority is specific to a concrete instance.

 Dynamic information: information that can be computed at runtime. An example is the
current resource consumption.

Figure 12: Self-X profile, static part

D4.1 Concept for modelling safe adaptive system behaviour

The static part of the information is modelled by means of the Self-X profile shown in For instance,
the data type SwcStaticInfo captures additional information of software components regarding
resource consumption, execution time and required ECU type (the ECUs on which the components
can run, e.g. with respect to the processor architecture).

The information at the instance level is captured by the data type SwcInstanceInfo, the period
length we mentioned before is captured by a MARTE arrival pattern (which also adds a
classification whether the execution occurs periodically, aperiodically or sporadically).

The design of the profile was done in a specific way to assure the consistency between additional
information in the design model and a model at runtime. The additional information is not directly
captured by means of stereotype attributes. Instead, the stereotypes inherit from the data types
shown in Figure 12. The rationale is that the data types can be considered as the meta-model
elements of the runtime model. They contain only a subset of the information already in UML such
as the name of a port. Note that this information is marked as derived (prefixed with a “/” in the
figure): in the design model, the stereotype attribute is taken from the UML base element, in case
of the runtime model it is stored.

An automatic transformation extracts information from the design model in a format that can
directly be used for the instantiation of the runtime model.

It is expected that the profile will still evolve during the prototyping phase, for instance we may
need to add attributes for making suitable reconfiguration decisions at runtime.

D4.1 Concept for modelling safe adaptive system behaviour

7 Validation of Safe Adaptive System Behaviour

There is a need for an approach that can be used to validate the adaptive behaviour to avoid the
adaptation errors that can lead to an undesired system state while it is in operation [14]. This
approach should take into account the detection of errors that can happen during the adaptive
behaviour specification and need to be detected [15][16][17].

To validate the system adaptive behaviour we need:

 Local and global properties / Include local versus global concepts

 Specify the properties that need to be checked against the adaptive behaviour model (i.e.
the errors that need to be detected) at design time

 How to evaluate the feasibility of the new allocation at runtime?

 Include example of properties (including safety properties)

 Include boundaries of properties will be specified by constraints?

The System Adaptive Behaviour Errors at design time

In large scale software systems where there are a large number of adaptations, the system
adaptive behaviour is subject to errors such as inconsistency, redundancy, cycles, and
incompleteness.

 Adaptation Behavior Inconsistency: The inconsistency means that the adaptation actions
that need to be applied into the system contradict each other. The possible system
adaptation actions are to add, remove, and replace a system element. The inconsistency
between these actions can happen in the following situations. First, the required adaptation
actions are to add and remove the same system element (Type1 error). Second, the
required adaptation is to change (i.e. replace) the system element twice (Type2 error). For
instance when there are two replacements actions of the same component in the
adaptation request (e.g. replace component 1 with component 2 and replace component 1
by component 3).

 Adaptation Behaviour Redundancy: The redundancy appears when a rule is repeated, or
one rule is a sub-part of another. For example, two rules have the same condition(s), and
the adaptation action(s) of a rule is a part of the other rule adaptation action(s) (i.e. Type3
error). This error is detected by looking for an adaptation action that is repeated twice in the
required adaptation actions.

 Adaptation Behaviour Cycles: In context-aware systems, the context model changes initiate
a system adaptation (e.g. when the context model has the driver preferences entity active,
the route planning algorithm one is selected). In addition, the functional system changes
can lead to a context model adaptation (e.g. in response to the driver selection to use the
route planning two, the context model is changed by activating the congestion information
context entity). As such, the adaptation rules for changing the functional system in
response to context model changes and vice versa should be written carefully to avoid the

D4.1 Concept for modelling safe adaptive system behaviour

cycles. A cycle happens when the adaptation rules evaluation leads to adaptation actions
that make the same chain of rules firing to be performed again (i.e. Type4 error).

 Adaptation Behaviour Incompleteness: In large scale systems, there are a large number of
adaptation behaviours. As a consequence, there is a possibility of missing adaptation
behaviours (i.e. Type5 error). These missing behaviours are appeared when there is a
context situation without having an adaptation action to it or the rule conditions cannot be
evaluated to true (i.e. the rule cannot be fired). For example, an adaptation rule is based on
an and-condition (e.g. A and B), but the condition A and B cannot be evaluated to true in
the same time.

D4.1 Concept for modelling safe adaptive system behaviour

8 Summary

This deliverable shows how adaptive behaviour can be modelled. The modelling is based on
existing approaches such as a rule based adaptation and proposes means to model the rules on
the level of the UML/EAST-ADL system model. Design patterns are a complementary approach to
specify adaptive behaviour. We distinguish between anticipated adaptations that are based of
offline validated configurations with respect to resource and time requirements and not anticipated
ones that are validated at runtime based on runtime model information. The former is important for
safety certifications, the latter an additional robustness outside the certification scope and primarily
interesting for less critical functionality.

D4.1 Concept for modelling safe adaptive system behaviour

9 Bibliography

[1] EAST-ADL association, EAST-ADL Specification V2.1.2, Nov. 28th, 2013, http://www.east-
adl.info/Specification.html

[2] ESK et al, Concept for Enforcing Safe Adaptation during Runtime, SafeAdapt, Deliverable
3.1

[3] R. Laddaga, Guest Editor's Introduction: Creating Robust Software through Self-
Adaptation, IEEE Intelligent Systems Journal, Volume 14 Issue 3, pages 26-29, May
1999,

[4] M. Salehie and L. Tahvildari, Self-adaptive software: Landscape and research challenges,
ACM Transactions on Autonomous and Adaptive Systems (TAAS), Volume 4 Issue 2,
May 2009

[5] F. Salewski, S. Kowalewski, Hardware/Software Design Considerations for Automotive
Embedded Systems, IEEE transactions on industrial informatics, vol. 4, no. 3, August
2008

[6] C. Alexander. A Pattern Language: Towns, Buildings, Construction. Oxford University
Press, New York, 1977.

[7] R. Damaševicius, G. Majauskas, and V. Štuikys. Application of design patterns for
hardware design. In DAC ’03: Proceedings of the 40th annual Design Automation
Conference, pages 48–53, New York, NY, USA, 2003. ACM.

[8] R. Damaševicius and V. Štuikys. Application of UML for hardware design based on design
process model. In ASP-DAC ’04: Proceedings of the 2004 Asia and South Pacific Design
Automation Conference, pages 244–249, Piscataway, NJ, USA, 2004. IEEE Press.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston, MA, USA, 1997.

[10] F. Rincon, F. Moya, J. Barba, and J. C. Lopez. Model reuse through hardware design
patterns. In DATE ’05: Proceedings of the conference on Design, Automation and Test in
Europe, pages 324–329, Washington, DC, USA, 2005. IEEE Computer Society.

[11] N. Yoshida. Design patterns applied to object-oriented SOC design. In 10th Workshop on
Synthesis and System Integration of Mixed Technologies (SASIMI 2001), Nara, Japan,
Oct. 2001.

[12] Armoush, A., "Design Patterns for Safety-Critical Embedded Systems," PhD Thesis ,
2010.

[13] Biehl, M., DeJiu, C., Törngren, M. (2010) Integrating safety analysis into the model-based
development toolchain of automotive embedded systems. LCTES 2010. ACM, New York,
pp. 125-132

[14] Hussein, Mahmoud, Han, Jun, Colman, Alan, Yu, Jian. IEEE; 2012. An approach to
specifying and validating context-aware adaptive behaviours of software systems.

[15] J. Zhang and B. H. C. Cheng, "Model-based development of dynamically adaptive
software," presented at the Proceedings of the 28th international conference on Software
engineering, Shanghai, China, 2006.

[16] D. Sykes, et al., "From goals to components: a combined approach to self-management,"
presented at the Proceedings of the 2008 international workshop on Software engineering
for adaptive and self-managing systems, Leipzig, Germany, 2008.

D4.1 Concept for modelling safe adaptive system behaviour

[17] Y. Zhao, et al., "Model Checking of Adaptive Programs with Mode-extended Linear
Temporal Logic," in 2011 8th IEEE International Conference and Workshops on
Engineering of Autonomic and Autonomous Systems (EASe), 2011, pp. 40-48.

[18] I. Jahnich, I. Podolski, and A. Rettberg, “Towards a middleware approach for a self-
configurable automotive embedded system,” Software Technologies for Embedded and
Ubiquitous Systems, pp. 55–65, 2008.

[19] A. Rettberg, R. Anthony, D. Chen, I. Jahnich, G. de Boer, and C. Ekelin, “A dynamically
reconfigurable automotive control system architecture,” in Proceedings of the 17th IFAC
World Congress, 2008, vol. 17, 2008.

[20] D. Chen, M. Törngren, M. Persson, L. Feng, T. Qureshi, “Towards Model-Based
Engineering of Self-configuring Embedded Systems. In H. Giese, G. Karsai, E. Lee, B.
Rumpe, and B. Schätz (eds.), Model-Based Engineering of Embedded Real-Time
Systems, volume 6100 of Lecture Notes in Computer Science, chapter 17, pp. 345–353.
Springer Berlin, Heidelberg, 2011.

[21] B. Morin, O. Barais, and J. Jézéquel, “K@RT: An Aspect-Oriented and Model-Oriented
Framework for Dynamic Software Product Lines,” in 3rd International Workshop on
Models@ Runtime, at MoDELS, 2008.

[22] A. Radermacher, B. Hamid, M. Fredj, J.L. Profizi, “Process and tool support for design
patterns with safety requirements”, Proceedings of EuroPlop'2013, ACM 978-1-4503-
3465-5/13/07, to appear

