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Glossary 

 

Term Definition 

Configuration A configuration is a set of software component (instances) along with their 
parameter settings and allocation to execution resources which in turn are 
executing on a specific ECU. Distinction between system wide configuration and 
projection on single ECU. 

EAST-ADL Automotive modelling language; exists in form of a dedicated language as well 
as a UML profile. Contains sub-profiles for different issues, e.g. variability and 
timing. 

ECU Electronic computation unit 

MARTE UML profile dedicated for “Modeling and Analysis for real-time and embedded 
systems”, contains several sub-profiles and a generic value extensions allowing 
for value and type tuples 

model@runtime Projection of the design model (including the adaptation issues), used by the 
safe adaptation core to execute reconfigurations 

Quiescent state States in which adaptations may be safely performed 

SAPC Safe Adaptation Platform Core – A piece of software instantiated on every core 
node to control the local runtime reconfiguration 

TIMMO Timing extensions of EAST-ADL 

UML Unified modeling language 
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Executive Summary 

This document describes the concept for modelling safe adaptive system behaviour. This means 
that the model provides information that allows the safe adaptation core to execute the adaptation 
at runtime in a way that assures the requirements with respect to timeliness, resource constraints 
and safety. 

Different modelling approaches are chosen depending on nature of an adaptation and the criticality 
of the affected components, i.e. there is no “one mechanism fits all” approach. The main reason is 
to achieve the objective of scalability (avoid combinatorial explosion) and that subsystems of 
different criticality have different requirements with respect to off-line validation. 

Besides the modelling itself, the document describes tooling aspects, i.e. how tools support the 
modelling and which artefacts can be generated from the adaptation model, notably the information 
required by the safe adaptation core. This information is a projection of the adaptation modelled at 
design time and is also denoted as a model@runtime. 
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1 Introduction 

This document describes the concept for modelling safe adaptive system behaviour. The model 
describes how the system will react to events such as faults, environmental conditions or the wish 
to integrate third party components. 

The modelling is specified as an additional and complementary aspect of the system model which 
itself is modelled using UML in combination with the EAST-ADL profile. EAST-ADL already 
provides a way to specify timing constraints, including end-to-end deadlines. 

1.1 Document scope 

The document describes how adaptation is modelled at design time, which artefacts are generated 
from the design model and how tools support this process. The document is intended for system 
architects that need to define adaptation conditions and constraints as well as implementers of the 
runtime mechanisms (D3.1 – Concept for Enforcing Safe Adaptation during Runtime). 

1.2 Document outline 

The document is structured as follows. In the next section, we introduce the requirements for 
modelling adaptation, for instance scalability, the possibility to express allocation constraints and 
so on. The next session is the main part of this deliverable. It describes how adaptation is actually 
modelled and classifies different ways of modelling adaptation. The last section describes a model 
at runtime, i.e. the runtime artefacts of the modelling. 
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2 Classification of adaptive systems 

In this section, we classify safe adaptive systems according to the literature. In the sequel, we 
consider in particular self-adaptive systems, since the systems within a car have to make 
autonomous reconfiguration decisions (which is an important difference between adaptive an self-
adaptive systems). Thus, we start with definitions from literature what self-adaptive systems are.  
Laddaga [3] defines these as 

 “Self-adaptive software evaluates its own behaviour and changes its behaviour when the 
evaluation indicates that the system is not accomplishing what is intended to do, or when better 
functionality or performance is possible […] This implies that the software has multiple ways of 
accomplishing its purpose and has enough knowledge of its construction to make effective 
changes at runtime.” 

The last part of the quotation above refers to what is today denoted as model@runtime. i.e. 
additional information about the software (its components) that are running on a system. 

Self-adaptive systems have multiple self-X properties, shown in the overview article from Salehie 
and Tahvildari [4]. Figure 1 shows the hierarchy as proposed in this article. At the basic level, a 
self-adaptive system needs to be aware of itself (its structure) and its context / environment. This 
enables properties such as self-optimisation and self-healing. 

In the context of SafeAdapt, we are interested primarily in the self-healing (i.e. increase robustness 
with respect to faults, self-protecting is more related to security instead of safety) and self-
optimising with respect to energy consumption.  

 

 

Figure 1: Hierarchy of self-X properties (from [4]) 

Adaptation actions can be further classified with respect to the time at which they are executed. 
There is a distinction between reactive and proactive actions. In case of the former, the system 
performs an action as a direct reaction to a change. In case of the latter, the system adaptation is 
based on a prediction of (environmental) changes. Thus, it may eventually reduce the number of 
adaptations or react before a (critical) event occurs. An example in SafeAdapt is the driver-
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drowsiness detection – it predicts a loss of attention and executes counter measures. Eventually, it 
may be possible to predict hardware failures based on the number of previous, temporary faults.  

The time dimension has an additional aspect: at which moment in the system lifetime is a 
reconfiguration possible? The literature distinguishes between design-time, configuration-time 
(during start-up phase), in a safe state1 (e.g. when stopped at a traffic light) or at a arbitrary point  
In the context of SafeAdapt, we target re-configuration at runtime – whereas the modelling of 
adaptations could be partly at design-time, as shown later. 

Another classification is whether the adaptation action is an optimization or a corrective adaptation, 
i.e. an action that masks a fault. In the context of SafeAdapt, we target both kinds of adaptations. 

Optimisation use cases are given in deliverable 5.1 – “Evaluation Methodology for the SafeAdapt 
results”: (1) the shutdown of auxiliary systems if the battery level drops below 35% and (2) the 
energy recuperation by using electrical brakes whenever possible. A use case similar to the former 
the minimization of the energy consumption when the system is shut-off but needs to retain a few 
functions (such as keyless entry). 

 

 

                                                 
1 Note that the term safe-state is also used in the work of runtime reconfiguration: it denotes a state in which 

no requests are active therefore enabling consistency during reconfiguration.  
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3 Modelling Requirements 

The requirements for modelling adaptability comprise several aspects, notably which information 
is modelled and how this information is stored. Additional aspects are the usability and efficiency 
to create and store this information. A part of the information has been captured in deliverable D2.3 
(requirements of the design process and tools), although the latter focusses more on the individual 
requirements of the tools. 

Table 1 shows requirements extracted from D2.3: 

ID Category 
Sub 

Category 
Description Conflicts 

CEA-001 Functional System Modelling of system architecture in EAST-
ADL. Use Timing extensions of EAST-ADL  

  

CEA-002 Non-
Functional 

System Modelling of non-functional requirements 
using UML/MARTE 

  

CEA-003 Functional System Modelling of global modes, but respect 
CEA-004 

CEA-004 

CEA-004 Non-
Functional 

Efficiency Scalability – Avoid combinatorial explosion, 
i.e. avoid enumerating all possible system 
configurations in detail. 

  

CEA-005 Non-
Functional 

Tools Depending on criticality, we must be able to 
assure schedulability even during 
reconfiguration at all times (offline-analysis) 
possible conflict: doing schedulability 
analysis requires detailed configuration 
information and validation of all possible 
transition  

CEA-004 

CEA-006 None Process Respect tool flow picture from D4.2   
  System Modelling of adaptation is a separate issue 

that should be orthogonal to system 
definition 

 

Table 1: Requirements for modelling adaptability 

There are two particular requirements that are important in the context of modelling adaptability: 

The modelling must be scalable (CEA-004). This means that the size of the adaptability model 
may only grow linear or slightly faster (e.g. n*log(n)) with the system size. This requirement is 
important since it enables developers to specify the adaptation model in an efficient way, and since 
it also limits the storage requirements of the adaptation information in the running system. 

Critical components or subsystems require that all resource and timing requirements are met. 
While the validation of a new configuration after and during adaptation is in principle possible 
based on information at runtime, the results could not be guaranteed and the delay for the 
calculation could be important. Therefore, it is necessary to pre-calculate some information (CEA-
005), implying a potential conflict with the requirements to be scalable. 

The specification of timing constraints, including end-to-end deadlines is done using the TIMMO 
extension of EAST-ADL. 
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4 Related Work 

In this section, we list related work in the context of modelling adaptation. 

4.1 Feature modelling in EAST-ADL 

EAST-ADL offers the possibility to model at multiple levels of abstraction. The most abstract level 
is the feature level, in which a desired functionality is represented by a feature. Features may be 
structured in a tree-like way, including feature groups with cardinalities. The main idea is that 
different variants of a car differ in the sense that some features are present in a certain variant 
while others are not. Often a choice needs to be made. On the feature tree level, such a choice is 
represented by a so-called feature group offering an m out-of n choice. A configuration represents 
a selection of features for a product that is going to be built. Figure 2 shows a feature and a 
concrete configuration. In the configuration, the option ClimateCtrl is active, with respect to the 
wiper the mutual choice for an advanced wiper has been chosen but there is no rain sensor. 
Although the feature model is originally intended for making design time choices, it could be 
interesting to allow for adaptations in the sense of re-evaluating these choices at runtime. 

      

Figure 2: Feature tree (l) and configuration of this tree (r) – [source EAST-ADL variability] 

The functional analysis architecture represents a set of components that realize a feature. These 
components already have ports and are assembled as parts within a system representing the 
analysis architecture 

The detailed design architecture represents the architecture of the system that is deployed on the 
hardware. There is no instance modelling in EAST-ADL (most components exist exactly once, the 
cardinality of parts controls the number of instances). Figure 3 shows a feature tree at the design 
level, the alternative choice between two options of a wiper control results in two optional 
components. One of these could be activated at runtime. 
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Figure 3: Configuration of feature tree 

Thus, the combination of feature trees and configurations is a part of the adaption modelling which 
may be used to make decisions at runtime, i.e. to toggle at runtime between configurations. 

The former remains on the feature level, the latter is done on the design level. 

4.2 DiVA 

The DiVA project [21] focuses on dynamic variability in complex systems following a component-
based approach, close to Fractal. The actual configurations of the application are built at runtime, 
based on Aspect-Oriented Modelling (AOM) and models at runtime. A main objective of the DiVA 
approach is to model adaptive systems without having to enumerate all possible configurations 
statically. The application is modelled using a base model, which contains the common 
functionalities and a set of variant models, which can be composed with the base model. An 
adaptation model specifies which variants should be selected at runtime according to the 
adaptation rules and the current context of the executing system. However, the DiVA approach is 
not targeting distributed embedded systems, e.g. due to the large resource consumption overhead 
at runtime. 

4.3 DySCAS 

The DySCAS (Dynamically Self-Configuring Automotive Systems) project [18][19] focused on 
developing a middleware enabling dynamic self-configuration of automotive software systems. 
Adaptation of the system is realized through decision points, at which a policy has to be evaluated. 
Policy evaluation at runtime poses a significant overhead. 

A main use case is the addition of a new device. [20] describes a UML based modelling approach 
for the DySCAS reference architecture, consisting of analysis and design of application and 
middleware functions. The DySCAS reference architecture contains an Information Model which is 
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interesting in the context of modelling adaptability, as it describes the architectural variability of 
configurations. 

4.4 Design patterns 

The concept of design patterns [12] became one of the widely used and universal approaches for 
describing and documenting recurring solutions for design problems. The idea of design patterns 
was original proposed by the architect Christopher Alexander [6] who wrote several books on the 
field of urban planning and building construction. He defined a design pattern as a construct that 
expresses a relation between three parts: context, problem and solution (what is called three-part 
rule). Ever since, this concept has been applied to many different domains, including hardware and 
software design. 

In software domain, design patterns became popular in software architecture and development 
after the success of the book Design Patterns: Element of Reusable Object-Oriented Software by 
Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides [9] frequently referred to as the 
Gang of Four (GoF). They defined a design pattern as “Description of communicating objects and 
classes that are customized to solve a general design problem in a particular context”. This book, 
which includes a collection of patterns for object-oriented software design, was not the first effort to 
use the concept of design pattern in software; however, it is considered as the foundation for 
design patterns in software construction. 

Like in software development, design patterns have been also adapted for hardware design to 
provide implementation-independent and abstract views for recurring hardware design solutions. 
The more general benefit of using design pattern is to improve the hardware development process 
through importing the advantages of object oriented modelling techniques (see e.g. [7][8][10][11]).  

In general, we can summarize a design pattern as an abstract representation for how to solve a 
general design problem that occurs over and over in many applications. The main purpose of 
design patterns is to support and help designers and system architects to choose a suitable 
solution for a recurring design problem among available collection of successful solutions. 
Moreover, design patterns can simplify communication between practitioners and provide a good 
way for documentation of proven design techniques. 

4.5 Summary and conclusions 

We have shown existing approaches to deal with variability and adaptability. Although the 
variability modelling on the feature level is primarily intended for the static configuration of a 
system, it is useful for runtime adaptations as well. In particular, it can capture several (mutually 
exclusive) realization options of a function, which we will use in the context of degraded functions 
as shown later. 

The projects DiVA and DySCAS use and evaluate models at runtime in order to execute 
autonomous adaptation decisions. This approach is also chosen in SafeAdapt: runtime decisions 
are executed by the safe adaptation core (SAPC) based on model information. The main difference 
is that SafeAdapt needs to make some decisions at design time in order to guarantee the offline 
validation of safety-critical functions. SafeAdapt will take real-time considerations into account (on 
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the one hand by explicitly modelling timing constraints, on the other by taking care of performance 
aspects in the runtime representation of these models) 

Design patterns are a general way to associate design problems with a well-known solution. We 
will primarily use the patterns in the context of fault-tolerance patterns in section 5.3. 
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5 Modelling of Adaptation 

Before we can introduce different ways of modelling adaptation, we want to introduce the relevant 
terminology. 

Definition 1: a system-configuration defines a set of components, along with their interconnections 
and their allocation to tasks which in turn are allocated to a hardware node (ECU).  

 

Definition 2: A node-configuration is a subset of a system-configuration. It consists of the tasks for 
a certain hardware node and the components allocated to it. 

Please note that an ECU needs to know at least its node-configuration; it is currently not clear 
whether a single ECU knows the complete system configuration. 

Definition 3: a configuration is valid, if it respects resource and timing constraints. The latter can be 
verified by means of a schedulability analysis. A configuration may be accompanied by a 
scheduling plan that defines task priorities (in case of fixed priority scheduling). This definition can 
be applied to system and node configurations. 

 

Definition 4: An adaptation (or reconfiguration) is the transition from one configuration to another. 
This transition may be triggered by different events ranging from optimisations to failures. 

 

Definition 5: The health vector (see D3.1) provides status information about current configuration, it 
may trigger adaptation (or reconfiguration). 

 

The modelling of adaptations as defined above is to find a suitable level of abstraction to define 
system-configurations as well as the transitions between these. Node configurations can be 
derived automatically from system configurations. 

In the sequel, we define different ways to model adaptation at different abstraction levels, i.e. 
requiring more (or less) detailed information from the developer. In this section, we only have a 
brief description of each modelling aspect which is discussed in more detail in its own section 
within this chapter. 

The modelling of adaptation is often based on rules or policies that consist of a triple (event, 
condition, action), denoted as ECA: if the event is fired, the associated condition is evaluated. If the 
result is true, the associated (reconfiguration-) action is executed. Rule based adaptation is 
frequently used, for instance used in the robots domain. 

1. Define configurations and transitions explicitly. If this approach is chosen, a configuration of 
the system is defined in detail. An anticipated event, e.g. the failure of an ECU or a low-
battery condition is used as trigger for the move towards a new configuration. Defining a 
configuration explicitly within the model does not mean that the developer has to provide 
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this information. For instance, the allocation to a task (and the configuration of this task) is 
the result of schedulability analysis. 

A particular case of anticipated events are classical fault tolerance mechanisms: critical 
components need to be replicated to achieve a required availability. By defining a (passive) 
replication strategy, we define implicitly a set of configurations in which some replicas are 
active while others are not (and some used degraded variants of a rudimentary 
functionality). Fault detection is a trigger for transitions. The likelihood of a failure of a 
replica (or the ECU hosting it) is explicitly modelled in order to derive a suitable number of 
replicas. Thus, fault-tolerance is also within the class of anticipated fault recovery. 

2. Define constraints. Constraints impose restrictions on configurations and on reconfiguration 
actions. Constraints are typically combined with explicit configurations, since they reduce 
the search space of valid configurations. The latter is important in the case that the system 
has to handle a non-anticipated failure and needs to calculate a new configuration at 
runtime. Constraints can be applied to difference aspects of the system, for instance to 
timeliness (timing constraints) or memory consumption (resource constraints). 

Adaptation execution needs an underlying runtime mechanism, in case of SafeAdapt, the safe 
adaptation core as identified in D3.1. The adaptation core supports a set of runtime mechanisms, 
notably the activation of a stored configuration. Its use imposes implementation restrictions, for 
instance the number of pre-validated configuration that can be stored. Thus, it may be possible that 
a failure has been anticipated, but a predefined configuration reacting to this fault is not stored and 
the failures must therefore be handled like an unanticipated failure. The decision whether to use a 
stored configuration needs to take the importance of events into account, e.g. a combination of 
likelihood and safety impact. The use of a suitable mechanism thus becomes a derived 
information. 

5.1 Anticipated adaptations – predefined configurations 

Highly critical parts of the system must meet their availability requirements as well as resource and 
timing constraints. The latter must also hold while the system is executing a reconfiguration. 
Certification requires that the system design guarantees these properties by means of a validation 
at design time. Therefore, it is not feasible to calculate a new configuration at runtime, but all 
possible configurations and during transitions between these need to be validated. 

Event-condition-action rules can describe the activation of a new configuration, i.e. the action part 
of the ECA rule activates a certain configuration. The rules correspond naturally to transitions in a 
state machine, since the latter have a trigger (event), a guard (condition) and an effect (action). 
The main difference is that the firing of a transition depends on the source state (corresponding to 
a configuration) whereas the ECA rules can always fire and would need a suitable filtering 
condition.  

The number of possible configurations can potentially grow quickly, since each additional 
component can be active or inactive in a certain configuration and allocated to different ECUs. 
There are several ways to reduce the combinatorial explosion. 

1. Restrict predefined configurations to single hardware failures. This means that the case of a 
second failure after a first is not part of the set of predefined configurations. 
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2. Restrict predefined configurations to critical subsystems which in turn requires that the 
operating system isolates subsystems of different criticality from each other to avoid mutual 
influences, as done by partitioned operating systems used in the avionics domain. 
However,  this solution has two disadvantages. The first is that a SafeAdapt solution needs 
to work in the context of the commonly used operating systems in the automotive domain 
(AUTOSAR-OS based on OSEK/VDX) that do not support partitions. The second is that the 
assignment of fixed time budgets to partitions reduces overall effectiveness (difficult to tune 
budget), in particular for a large number of partitions. 

3. Hierarchical approach. Model global modes and certain failure situations. Possible sub-
states can be explicitly modelled. In such an approach, the modelling effort remains 
scalable while the number of different fine-grained configurations (as well as transitions 
between these) may explode. While the latter is costly, if may be acceptable, since it can be 
largely automated. 

4. Define additional constraints that reduce the number of possible configurations. For 
instance, allocation constraints (e.g. component may only be co-located) and dependencies 
exclude configuration from the search space. Constraint modelling is also important for 
unplanned adaptations, as it allows for online validations of possible configurations. 

 

Figure 4 : Different configurations 

Figure 4 shows an example of a state machine that represents a combination of the strategies 
(1) and (3). It considers three degraded states corresponding to the failure of ECU_A, ECU_B 
and ECU_C respectively. There is an additional low battery state/configuration which 
reconfigures the system to save energy (switching off auxiliary components with a relatively 
high energy consumption, as outlined in D5.1). The degraded modes do not support a specific 
low-battery state, as we would have a specific sub-state for each of them. The nominal state 
has nested sub-states corresponding to the driving situation. The use of the state-machines 
hierarchy avoids to specify multiple triggers to the degraded or low-battery states. 



  

D4.1 Concept for modelling safe adaptive system behaviour   
 

 

5.1.1 Cluster definition for modelling degraded functionality 

Some automotive functions can offer different degrees of functionality depending on the availability 
of sensors or the presence of failures. Figure 5 shows an example of an automatic cruise control 
function that comes in three different variants. A fully working cruise speed, a nominal ACC and a 
variant called Speed Control. The coloured boxes enclose the components that are required by the 
different variants. The complete cruise control requires all sensors, whereas the simple variant 
requires a single component.  The different variants can be captured with the EAST-ADL variability 
modelling shown in the right-hand side of the figure: instead of making a choice at system 
configuration time, the choice depends on the availability (at runtime) of the sensors. 

 

Figure 5: Cluster modelling in case of an automatic cruise control 

The full-speed ACC depends on the functionality of the limited-speed ACC and two Short Range 
Radars (SRR) and both depends on the functionality of the traditional cruise control and Long 
Range Radar (LRR). These can be seen as a case in which a limited or degraded functionality can 
be offered even after a malfunction in parts of the system. 

To model the degradation we propose to cluster software functions (e.g. EAST-ADL 
FunctionPrototype) in a FunctionCluster. This FunctionCluster represents a set of software 
functions which are necessary to deliver the functionality of the cluster. In the case of the example 
in Figure 5, FunctionClusters for the full-speed ACC, limited-speed ACC and Cruise Control can be 
modelled (illustrated by the coloured boxes). An overview of all elements in our proposal is shown 
in Figure 6 in form of a UML profile. During prototyping, we will evaluate which of the stereotypes 
are required and which can eventually be based on existing mechanism in EAST-ADL. 

ACC 

Full speed 
ACC 

Speed 
Control 

Normal 
ACC 

SRR 

SRR 

LRR ACC 

Speed-
Control
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Figure 6: Overview of an UML-based profile for the degradation concept 

To model the degradation between the FunctionClusters we propose to introduce a 
DegradationMode which refers to a FunctionCluster and also to a more degraded 
DegradationMode, as shown in Figure 7. The semantic is as follows: If a function in a 
FunctionCluster fails, the system can switch to a degraded mode to deliver at least limited 
functionality. 

 

Figure 7: DegradationMode for modelling system degradation 

We also extend the concept of clustering software functions to hardware. Therefore we introduce a 
HardwareCluster analogously to the FunctionCluster. The semantic of the HardwareCluster is that 
a cluster provides its functionality only if all hardware elements (e.g. EAST-ADL 
HardwareFunctionPrototypes) are available (i.e. operating). We furthermore propose a 
DynamicAllocation concept to provide a mechanism to model that a software function of a cluster 
can be allocated to any hardware element of a HardwareCluster. During runtime the system 
decides on which hardware element a software function is running. For some safety-critical 
functionality it is prohibited to determine the allocation dynamically during runtime. In that case we 
propose to model the static allocation of a FunctionCluster by referring the DegradationMode to a 
StaticAllocation. These allocations would be determined and validated offline and the system is 
only allowed to switch between statically validated allocations. 
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5.2 Triggers, conditions and actions 

Adaptations can be triggered by several events. While the compensation of faults is very important 
in the context of SafeAdapt, it does not represent the only kind of triggering event. In this section, 
we list a set of possible triggers. We also add the associated conditions and actions. The resulting 
triple (ECA rule) can be represented by state machines and may also be associated with a design 
pattern, see section 5.4. 

 

Event      Node failure (replica failure?)             
Condition  
Action - if active: none (remaining replica is already active and its results are 

immediately taken into account) 
- if passive: activate replica 

Post-Action Bring up new backup replica, i.e. execute a reconfiguration that re-establishes 
the original number of replicas and enables an eventual compensation of 
additional faults. 

 

Event      Sensor failure             
Condition Condition: failed sensor is essential for correct component operation of a nominal 

function (this information is available in model@runtime) 
Action Activate degraded mode replica. See section 5.1.1 and 5.3.1. 

 

Event      Replica state change 
Condition n-th change (objective: reduce traffic related to state changes) 
Action Broadcast state-update message 

 

Event      Timer 
Condition State has been modified 
Action Broadcast state-update message 
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5.3 Fault Tolerance 

 

Figure 8: Different ways to model fault tolerance (from D3.1, [Salewski et.al 2008]) 

Figure 8 shows a classification of several fault tolerance mechanisms, distinguishing four different 
sectors. In the sequel, we will list each of the sectors briefly in the context of SafeAdapt. 

1. Avoid SW faults: In the SafeAdapt project, we reduce the probability of software faults by 
means of a well-designed design process according to the ISO26262 methodology. 
Requirements are explicitly defined. The behaviour of software components is verified by 
means of analysis mechanisms and through simulation. We do not further describe these 
mechanisms in detail here, since they do not contribute to the modelling of adaptation. 

 

2. Avoid HW faults: This aspect is not in the scope of the SafeAdapt project, no specific 
hardware is developed. However, the lockstep mechanism allows failure  
 

3. Tolerate SW faults: Fault tolerance patterns use a set of replicas that may or may not run in 
parallel (see next section). The patterns provide the option to diversify the software, i.e. use 
different implementations of certain functionality. In case of an active replication, faults can 
be detected if there is a disagreement. However, in order to know which component is 
defective, at least three replicas are required. In the context of SafeAdapt, diversification is 
mainly done in form of using degraded components, i.e. components that provide less 
accurate results, but require fewer resources and use a simpler calculation which is 
therefore less likely to contain a software failure. Degraded components could be used to 
determine a plausible interval in case of active replication. In the context of SafeAdapt, 
degraded components are mainly used as backup components in a passive replication 
pattern. On the feature level, degraded variants can be modelled with the variability 
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mechanism in EAST-ADL, function clusters may capture the different dependencies, as 
shown in section 5.1.1. 
 

4. Tolerate HW faults: The SafeAdapt hardware architecture enables a flexible routing of 
sensor as well as actuator data to each ECU. In combination with fault tolerance patterns 
and reconfiguration mechanisms, ECU failures can be tolerated. The lockstep mechanism 
enables failure detection and isolation. Deliverable D3.2 lists the used mechanisms in 
detail. 

 

5.3.1 Fault tolerance patterns 

Different kinds of faults have been classified in the Safe-Adapt deliverable D3.1, section 5.5 
(Failure Detection, Classification & Remediation). The runtime uses a M.A.P.E-cycle (monitor, 
analyze, plan, execute, see Figure 4 of D3.1), failures are detected in the analysis phase of the 
M.A.P.E-cycle, implemented as part of the fault filter. Four different categories are identified. 

SAPC fault cause 
class 

Remediation 

Maskable 
Transient 

Hardware Error 

Remediation is directly performed in hardware or platform 
software. The SAPC remembers this occurrence in order to treat 
the error as permanent if it occurs more often. 

Hardware Partition 
Error 

Passivate partition and move application to other partition or 
alternatively to other core node. 

General Hardware 
Error 

Passivate core node and reactivate applications on other core 
nodes. 

Application Design 
Fault 

Passivate application (only QM) or use degraded variant 

Table 2: SAPC fault causes and associated remedies 

These faults can be captured by fault tolerance patterns. In the sequel, we list three different 
patterns how fault tolerance can be achieved within a software architecture. 

 Active with vote: n components are running in parallel. Results are voted, typically n must 
be bigger or equal to three, otherwise it is not possible to tell who is “right”, if there is a 
divergence. Due to its relatively high cost, the pattern is less important in the automotive 
domain, but used in railways and avionics.  

 Active without vote: n components are running in parallel. The result of one of the ECUs 
(components may not run on the same ECU. Results are not compared, each ECU 
performs regular self-tests and results are checked for validity. 

 Passive: only one component is active at a given time. If the component detects that is fails 
(or other ECUs detect the failure/absence of data), a backup component is activated. There 
are different variants, how this backup component can be determined and whether other 
components are affected by this activation. 
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o Statically assigned backup, no further changes of architecture. In case of critical 
subsystems, the backup component must be known in order to validate in advance 
that resources are available and timing constraints are met. The latter includes a 
schedulability analysis of the configuration in which the backup component is active. 
Since there are no further changes, it is possible to make a single schedulability 
analysis assuming that original and backup are active at the same time, i.e. 
reducing combinatorial explosion. 

o Statically assigned backup with additional changes. In this case, the activation of 
the backup component implies a further reconfiguration, e.g. relocate or deactivate 
less critical components (in order to achieve resource constraints). In this case, a 
separate schedulability analysis of the new configuration is required. 

o Dynamically assign a backup component and eventually perform additional 
changes. 

All three variants of this patterns might be followed by a “repair action” that assures that 
a further backup will be available in case of second failure. This additional 
reconfiguration may be executed in a suitable delay after the first reconfiguration that 
activated the original backup (less time critical, might be planned at runtime). 

Active and passive patterns can be used in combination with diversified algorithms, i.e. the 
software for each replica has been developed by different teams according to the same 
specification. Diversification addresses the application (software) design fault possibility in the table 
above. In the context of SafeAdapt, the diversified algorithm is typically degraded: (1) a simpler 
computation that provides less accurate but “good enough” results, requiring less resources 
(useful, since the overall number of resources is reduce after a hardware failure) or (2) a different 
implementation that may compensate failed sensors or actuators. An example is a steer-by-wire 
functionality based on individual braking/acceleration of the in-wheel motors on the left or right 
hand side, respectively. 

Active fault tolerance patterns do not require any state transfer. Thus, the switch-over time is 
smaller compared to passive systems. In case of a voter, no reconfiguration at all is implied if one 
of the replicas fails. In the absence of a vote, only a different output needs to be selected, 
schedulability analysis already took into account that all replicas are running. Therefore, the 
transition in case of a failure is not considered as a reconfiguration. 

Thus, only the passive fault-tolerance patterns require a reconfiguration. A failure of the primary 
component “only” implies the activation of a backup component. The activation of the backup-
component corresponds to the activation of a new configuration. In case of a hardware fault, the 
main roles in the pattern are the hardware (and not the software) components. The link between 
pattern and adaptation specification is that the pattern may be accompanied by a set of event-
condition-action rules – eventually in form of a state-machine. Thus, the application of the design 
pattern implicitly defines adaptation rules. From a tooling viewpoint, it either implies that the system 
architect does not have to specify specific transitions or that the consistency of explicit transitions 
with the design pattern application could be verified. 

It is also possible that the backup components represent alternative components that are activated 
not only in case of a failure but due to other triggering events. In this case, a local state-machine 
(or ECA rule) should capture the transition. This case might differ with respect to schedulability 
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analysis. Backup components will never run on the same ECU while alternative ones might do that. 
Thus, we need to analyse each configuration (i.e. one with the normal component and one with the 
alternative component) separately.     

5.4 Modelling design patterns 

Design patterns capture the combination of a problem and a solution in which the participants play 
several roles. We propose to model this by defining a UML package that captures the problem, 
solution and applicability in textual form (stereotyped UML comments) as shown in [22]. The roles 
are explicitly modelled by means of a UML collaboration. The solution of a pattern consists of a 
composite class that refines the roles of the collaboration by adding additional relations and 
implementation artefacts (for instance a voter). Constraints can be defined either on the level of the 
solution or collaboration. 

The model of the passive fault-tolerance pattern with diversified replicas is shown in Figure 9. The 
package applies the stereotype “SafetyPattern”, a specialization of the “Pattern” stereotype. The 
screenshot shows four comments that contain textual descriptions. The solved problem is the 
systematic risk related to software, i.e. the “application design fault” row in the table from D3.1. 

 

Figure 9: Model of passive fault-tolerance pattern with diversification 

Figure 10 shows how the modelled roles within the collaboration. Nominal and degraded roles are 
identified. An allocation constraint is applied to the roles – they may not be allocated to the same 
ECU. 

 

Figure 10: Modelling of a design pattern – identifying roles and applying constraints 
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Figure 11 illustrates the resulting architecture, when the pattern is applied. Consider an execution 
chain from F1 to F3 (to be exact from the parts that represent instances of F1, F2 and F3, 
respectively). F2 is also a composite using two replicas with different implementations (F21 and 
F22). In this example, the results of both replicas are fed into component F3 which is responsible 
for making a selection. 

The application of design patterns helps to define configurations, since they determine a set of 
replicas (with an allocation constraint). This allocation of the replicas can be determined 
automatically, eventually be means of a constraint solver. Also possible: specify required 
availability (requirement), pattern determines number of required replicas. 

 

 

 

Figure 11: EAST-ADL2 model describing the failure propagation in a hot standby system [13] 

The event-condition-action rules shown in section 5.2 can be associated with a design pattern: if a 
certain pattern is applied the runtime-adaptation-core executes the adaptation behaviour that is 
specified in the rule for the roles within the pattern. Thus, the use of the design pattern implies a 
known adaptation behaviour. This has the advantage that a developer does not need to specify 
reconfiguration actions manually for the associated components. 
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5.5 Modelling of constraints 

In order to verify that a configuration is valid, it is necessary to check a set of rules or constraints. 
Constraints can apply to different aspects, for instance to the resource consumption, the timing, 
allocation or adaptation. Some constraints must be met by all applications (e.g. timeliness) while 
some are specific for an application (e.g. allocation constraints). The importance of constraints in 
the context of adaptation is twofold: they are used to verify configurations and to create new valid 
configurations automatically. 

In the sequel, we discuss common constraints in embedded and real-time systems.  

5.5.1 Modelling allocation constraints 

An allocation constraint restricts the allocation of a component to a set of ECUs. Some 
components can only run on certain ECUs, e.g. due to the processor architecture or the availability 
of I/O signals or busses. Besides a direct constraint related to a specific ECU, it is common to have 
restrictions that depend on the mutual allocation of components. In the context of replication 
patterns, replicas should not run on the same ECU, i.e. to forbid co-localisation. For performance 
reasons the contrary is often required as well: application components that exchange a large 
amount of data, need to be co-located in order to meet deadlines. 

5.5.2 Modelling of resource constraints 

Application components require a certain amount of resources from the underlying platform, e.g. a 
certain amount of RAM, OS resources such as tasks, timers or semaphores. The generic 
constraint is that the requirements of the application must meet the capabilities of the platform. 
Therefore, both, application requirements and capabilities need to be modelled. For the former, we 
propose the use of the Self-X profile combined with EAST-ADL mechanisms. This profile describes 
for instance the memory resoures required by a component and its (worst case) execution time. It 
is the basis for creating a runtime model described in chapter 6. 

For the latter the use of the hardware resource modelling part of MARTE, i.e. describe the 
resources that are offered by the hardware. 

5.5.3 Modelling of timing constraints 

Timing constraints can be modelled in different UML extensions, notably the profiles MARTE and 
EAST-ADL. In the context of this document, we will focus on specifying timing requires using the 
latter, notably the TIMMO specification within EAST-ADL. 

The validation of timing constraints includes the execution of schedulability analysis: a plan how to 
applicate processor resources to the difference tasks within a system. The execution of such an 
analysis is a non-linear problem, when executed at runtime, heuristics are used to obtain a (likely 
sub-optimal) results in a short time frame.  

5.5.4 Modelling of adaptation constraints 

The adaptation is characterised by the transition from a source to a target configuration. Source 
and target configuration must respect the constraints defined so far. Timing constraints must also 
hold during the transition. In addition, specific adaptation constraints might explicitly forbid the 
evolution of certain applications.  
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Constraints are both evaluated for anticipated and non-anticipated adaptations. This means that 
constraint evaluation needs model information at runtime in order to verify a constraint. Examples 
of non-anticipated adaptations include the addition of a new component not been known at design 
time or failure scenarios that are not part of a predefined. It is also possible that a first failure could 
be handled by a planned reconfiguration but a subsequent failure has not been anticipated (while 
this is out of certification scope, it might be interesting to study this case).  

Runtime decisions need to be taken for these non-anticipated adaptations and the runtime 
decisions are guided by constraints available in the model at runtime. 

5.5.5 Constraint evaluation 

An orthogonal aspect is the evaluation of constraints. If configurations are pre-configured, they can 
be completely evaluated offline or at runtime. The choice which algorithm is used can be derived 
automatically based on security level, recovery time, likelihood, and space restriction. In 
SafeAdapt, we will evaluate constraints at design time (offline) whenever possible and when 
required for safety critical components. 
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6 Models@runtime 

In order to execute reconfiguration decisions, the safe adaptation core needs to know (among 
other information) which component runs on which ECU and how the components are 
interconnected. It also needs to know how many resources are available on an ECU and the 
resource consumption of each component. A part of this information is available in the runtime 
model – a combination of a projection of the model that is used at design time and additional 
information that can only be computed at runtime. 

The information required information can be classified in the following way. Platform 
information/capabilities are provided by a specific component representing the platform. 

 Static information on component level including resource and timing requirements. 

 Static information instance level: in principle same information as for the preceding bullet. 
But this information is attached to an instance of a component, e.g. the required RAM is 
information shared by all instances (i.e. on the component level), while a configured period 
length or priority is specific to a concrete instance.  

 Dynamic information: information that can be computed at runtime. An example is the 
current resource consumption. 

 

Figure 12: Self-X profile, static part 
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The static part of the information is modelled by means of the Self-X profile shown in For instance, 
the data type SwcStaticInfo captures additional information of software components regarding 
resource consumption, execution time and required ECU type (the ECUs on which the components 
can run, e.g. with respect to the processor architecture). 

The information at the instance level is captured by the data type SwcInstanceInfo, the period 
length we mentioned before is captured by a MARTE arrival pattern (which also adds a 
classification whether the execution occurs periodically, aperiodically or sporadically). 

The design of the profile was done in a specific way to assure the consistency between additional 
information in the design model and a model at runtime. The additional information is not directly 
captured by means of stereotype attributes. Instead, the stereotypes inherit from the data types 
shown in Figure 12. The rationale is that the data types can be considered as the meta-model 
elements of the runtime model. They contain only a subset of the information already in UML such 
as the name of a port. Note that this information is marked as derived (prefixed with a “/” in the 
figure): in the design model, the stereotype attribute is taken from the UML base element, in case 
of the runtime model it is stored. 

An automatic transformation extracts information from the design model in a format that can 
directly be used for the instantiation of the runtime model. 

It is expected that the profile will still evolve during the prototyping phase, for instance we may 
need to add attributes for making suitable reconfiguration decisions at runtime. 
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7 Validation of Safe Adaptive System Behaviour 

There is a need for an approach that can be used to validate the adaptive behaviour to avoid the 
adaptation errors that can lead to an undesired system state while it is in operation [14]. This 
approach should take into account the detection of errors that can happen during the adaptive 
behaviour specification and need to be detected [15][16][17]. 

To validate the system adaptive behaviour we need: 

 Local and global properties / Include local versus global concepts 

 Specify the properties that need to be checked against the adaptive behaviour model (i.e. 
the errors that need to be detected) at design time 

 How to evaluate the feasibility of the new allocation at runtime? 

 Include example of properties (including safety properties) 

 Include boundaries of properties will be specified by constraints? 

 

The System Adaptive Behaviour Errors at design time 

In large scale software systems where there are a large number of adaptations, the system 
adaptive behaviour is subject to errors such as inconsistency, redundancy, cycles, and 
incompleteness. 

 Adaptation Behavior Inconsistency: The inconsistency means that the adaptation actions 
that need to be applied into the system contradict each other. The possible system 
adaptation actions are to add, remove, and replace a system element. The inconsistency 
between these actions can happen in the following situations. First, the required adaptation 
actions are to add and remove the same system element (Type1 error). Second, the 
required adaptation is to change (i.e. replace) the system element twice (Type2 error). For 
instance when there are two replacements actions of the same component in the 
adaptation request (e.g. replace component 1 with component 2 and replace component 1 
by component 3). 

 Adaptation Behaviour Redundancy: The redundancy appears when a rule is repeated, or 
one rule is a sub-part of another. For example, two rules have the same condition(s), and 
the adaptation action(s) of a rule is a part of the other rule adaptation action(s) (i.e. Type3 
error). This error is detected by looking for an adaptation action that is repeated twice in the 
required adaptation actions. 

 Adaptation Behaviour Cycles: In context-aware systems, the context model changes initiate 
a system adaptation (e.g. when the context model has the driver preferences entity active, 
the route planning algorithm one is selected). In addition, the functional system changes 
can lead to a context model adaptation (e.g. in response to the driver selection to use the 
route planning two, the context model is changed by activating the congestion information 
context entity). As such, the adaptation rules for changing the functional system in 
response to context model changes and vice versa should be written carefully to avoid the 
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cycles. A cycle happens when the adaptation rules evaluation leads to adaptation actions 
that make the same chain of rules firing to be performed again (i.e. Type4 error). 

 Adaptation Behaviour Incompleteness: In large scale systems, there are a large number of 
adaptation behaviours. As a consequence, there is a possibility of missing adaptation 
behaviours (i.e. Type5 error). These missing behaviours are appeared when there is a 
context situation without having an adaptation action to it or the rule conditions cannot be 
evaluated to true (i.e. the rule cannot be fired). For example, an adaptation rule is based on 
an and-condition (e.g. A and B), but the condition A and B cannot be evaluated to true in 
the same time. 
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8 Summary 

This deliverable shows how adaptive behaviour can be modelled. The modelling is based on 
existing approaches such as a rule based adaptation and proposes means to model the rules on 
the level of the UML/EAST-ADL system model. Design patterns are a complementary approach to 
specify adaptive behaviour. We distinguish between anticipated adaptations that are based of 
offline validated configurations with respect to resource and time requirements and not anticipated 
ones that are validated at runtime based on runtime model information. The former is important for 
safety certifications, the latter an additional robustness outside the certification scope and primarily 
interesting for less critical functionality. 
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