

Project acronym: SafeAdapt

Project title: Safe Adaptive Software for Fully Electric
Vehicles

Grant Agreement number: 608945

Coordinator: Dr.-Ing. Dirk Eilers

Funding Scheme: FP7-2013-ICT-GC

Deliverable 4.2

Specification of the Design Process for Safe Adaptive
Embedded Systems and Tool Support for V&V Adaptive

System Behaviour

Due date of deliverable: 30th June 2015

Actual submission Date: 1st July 2015

Lead beneficiary for this deliverable: CEA

Dissemination level

PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

The research leading to these results has received funding from the European Community's Seventh
Framework Programme (FP7/2007-2013)

This document contains information which is proprietary to the members of the SafeAdapt consortium.
Neither this document nor the information contained herein shall be used, duplicated or communicated by
any means to any third party, in whole or in parts, except with prior written consent of the members of the

SafeAdapt consortium.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

2

Document Information

Title Specification of the design process for safe adaptive embedded
systems and tool support for V&V adaptive system behaviour

Creator TECNALIA: Mª Carmen Palacios, Alejandra Ruiz, Maite Álvarez,
Adrian Martin, Garazi Juez Uriagereka

Description This document describes the design process for safe adaptive
embedded systems as well as the tool support for V&V of adaptive
system behaviour for the SafeAdapt project.

Publisher CEA

Contributors CEA: Ansgar Rademacher, Önder Gürcan, Reda Nouacer, Gilles
Mouchard

Fraunhofer: Dulcineia Oliveira da Penha, Philipp Schleiss, Gereon
Weiss

Siemens: Kai Hoefig, Cornel Klein

TTTech: Andreas Eckel

Revision – Pininfarina: Sandro Morero, Duracar: Ken Lam,
Ficosa: Andrea Saccagno

Language en-GB

Creation date 05/01/2015

Version number 1.0

Version date 30/06/2015

Audience internal

 public

 restricted

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the SafeAdapt consortium. Neither this document
nor the information contained herein shall be used, duplicated or communicated by any means to any third
party, in whole or in parts, except with prior written consent of the SafeAdapt consortium.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

3

Table of Contents

List of Figures 6
List of Tables 8
Executive Summary 9
1 Introduction 10

1.1 Document scope 10
1.2 Document outline 11

2 Terms and Definitions 12
3 Tool Chain 14

3.1 Description 14
3.2 Tools along the ISO 26262 lifecycle 16

4 Detailed Description of Tools 17

4.1 Arctic Studio 17

4.1.1 General description 17
4.1.2 Tool along the lifecycle. 17
4.1.3 Artefacts metamodel 17
4.1.4 Inputs 17
4.1.5 Outputs 17

4.2 composeR 17

4.2.1 General description 17
4.2.2 Tool along the lifecycle. 18
4.2.3 Artefacts metamodel 18
4.2.4 Inputs 18
4.2.5 Outputs 18

4.3 Dynacar RT 18

4.3.1 General description 18
4.3.2 Tool along the lifecycle 19
4.3.3 Artefacts metamodel 19
4.3.4 Inputs 19
4.3.5 Outputs 20

4.4 ERNEST 20

4.4.1 General description 20
4.4.2 Tool along the lifecycle. 20
4.4.3 Artefacts metamodel 21
4.4.4 Inputs 21
4.4.5 Outputs 21

4.5 FMEDAexpress 21

4.5.1 General description 21
4.5.2 Tool along the lifecycle. 21
4.5.3 Artefacts metamodel 21

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

4

4.5.4 Inputs 22
4.5.5 Outputs 22

4.6 Papyrus 22

4.6.1 General description 22
4.6.2 Tool along the lifecycle. 22
4.6.3 Artefacts metamodel 22
4.6.4 Inputs 22
4.6.5 Outputs 23

4.7 Prossurance 23

4.7.1 General description 23
4.7.2 Tool along the lifecycle 23
4.7.3 Artefacts metamodel 23
4.7.4 Inputs 23
4.7.5 Outputs 24

4.8 Sophia for Papyrus 24

4.8.1 General description 24
4.8.2 Tool along the lifecycle. 24
4.8.3 Artefacts metamodel 25
4.8.4 Inputs 25
4.8.5 Outputs 25

4.9 Qompass 25

4.9.1 General description 25
4.9.2 Tool along the lifecycle. 26
4.9.3 Artefacts metamodel 26
4.9.4 Inputs 26
4.9.5 Outputs 26

4.10 TTE-Tools 26

4.10.1 General description 26
4.10.2 Tool along the lifecycle. 27
4.10.3 Artefacts metamodel 27
4.10.4 Inputs 27
4.10.5 Outputs 27

4.11 UNISIM-VP 28

4.11.1 General description 28
4.11.2 Tool along the lifecycle. 28
4.11.3 Artefacts metamodel 28
4.11.4 Inputs 29
4.11.5 Outputs 29

4.12 XMT - The CHROMOSOME Modelling Tool 29

4.12.1 General description 29

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

5

4.12.2 Tool along the lifecycle. 29
4.12.3 Artefacts metamodel 29
4.12.4 Inputs 29
4.12.5 Outputs 29

5 Guidelines and Methodology 30

5.1 Concept phase 34
5.2 Product development: system level 45
5.3 Product development: hardware level 58
5.4 Product development: software level 60
5.5 ASIL-oriented and safety-oriented analyses 75

6 Examples of Tool Chain Use 87

6.1 Model-to-code approach 87
6.2 Model-to-simulation approach 88
6.3 Risk analysis approach 89

7 Conclusions 91
Bibliography 92
List of abbreviations 94

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

6

List of Figures

Figure 1: SafeAdapt tools overview ... 16
Figure 2: Overview of ISO 26262 ... 31
Figure 3: Overview of ISO 26262 in Prossurance tool ... 33
Figure 4: ISO 26262 Concept phase in Prossurance tool .. 35
Figure 5: Target features definition in Papyrus tool ... 37
Figure 6: Requirements in Excel format ... 38
Figure 7: Requirements in Papyrus tool ... 39
Figure 8: Allocations of requirements to features in Papyrus ... 39
Figure 9: Preliminary HARA in Excel format .. 42
Figure 10: Preliminary HARA in Papyrus tool .. 43
Figure 11: Functional analysis architecture in Papyrus tool ... 44
Figure 12: ISO 26262 Product development at system level in Prossurance tool 47
Figure 13: Concrete functional architecture of a critical system in Papyrus tool 49
Figure 14: Function-to-node allocation in a critical system in Papyrus tool 50
Figure 15: Results from the analysis/optimization in Papyrus (Qompass) tool 51
Figure 16: Definition of a timing constraint in the ERNEST tool ... 52
Figure 17: Visualization of analysis results in the ERNEST tool .. 53
Figure 18: Example of a system FTA with composeR: (a) Classic Fault Tree and (b) Component
Fault Tree. For more information, please see (Jessica Jung, 2013). .. 55
Figure 19: Example of a FTA with Failure probabilities with composeR: (a) At component level,
failure modes propagate from one component to another and (b). Within a component fault tree,
the failure behavior of a component is modeled. .. 56
Figure 20: Safety requirements, design and test flow from concept to software 57
Figure 21: ISO 26262 Product development at software level in Prossurance tool 61
Figure 22: EAST-ADL and AUTOSAR scopes ... 63
Figure 23: AUTOSAR model in AR gateway tool ... 64
Figure 24: Generation of arxml files from AUTOSAR model in AR gateway tool 64
Figure 25: Software architecture in Arctic Studio tool .. 65
Figure 26: RTE configuration in Arctic Studio tool ... 66
Figure 27: Arctic Studio tool workflow .. 68
Figure 28: TTEthernet data flow for configuring a network .. 69
Figure 29: TTEthernet tools development suite ... 70
Figure 30: Real vehicle 3D visualization in Dynacar RT .. 71
Figure 31: Vehicle parameters definition in Dynacar RT .. 72
Figure 32: External model integration and virtual ECU (SIL) in Dynacar RT 72
Figure 33: Accurate test track model in Dynacar RT ... 73
Figure 34: Example of test case input template in Dynacar RT ... 73
Figure 35: Common Cause Failure .. 75
Figure 36: Cascading Failure ... 75
Figure 37: (a) FMEA and (b) FTA [3] ... 77
Figure 38: General FMEA analysis process ... 79
Figure 39: CFT example .. 82

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

7

Figure 40: Two top-events (B. Kaiser, 2003) ... 83
Figure 41: Example of a system FTA with composeR. (a) Classic Fault Tree and (b) Component
Fault Tree. For more information, please see (Jung, J.; Hoefig, K.; Domis, D.; Jedlitschka, A.;
Hiller, M., Oct 2013). ... 85
Figure 42: Screenshot of the FMEDAexpress interface ... 86
Figure 43: Tool chain with focus on code generation ... 87
Figure 44: Tool chain with focus on simulation .. 89
Figure 45: Tool chain with focus on safety-analysis tools .. 90

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

8

List of Tables

Table 1. SafeAdapt tools .. 15
Table 2. Methods for safety analysis on the system design (II) .. 54
Table 3. “Single-point fault metric” and “latent-fault metric” values .. 59
Table 4. Tool capabilities addressing ISO 26262 ... 78
Table 5. General FMEA table ... 80
Table 6. Symbols for CFT ... 82
Table 7. CFT modelling support architecture-based .. 84
Table 8. CFT process support of architecture-based safety evaluation ... 84
Table 9. CFT support of architecture-based safety evaluation ... 84

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

9

Executive Summary

This document defines the development, verification and validation processes for safe adaptive
embedded systems, enabling the certifiability of adaptive embedded systems in the automotive
domain with special focus on fully electric vehicles regarding ISO 26262 (International Organization
for Standardization (ISO), 2011).

One of the main SafeAdapt project objectives is to empower developers to create safety-critical
software more efficiently by reducing costs and coping with certification requirements. As said
above, the proposed SafeAdapt Methodology fully addresses the ISO 26262 standard and it is
supported by model-based tools used for different steps from requirements to detailed software
and hardware implementation and validation. On the one hand, system and components design is
based on well-known standards such as UML (UML), EAST-ADL (EAST-ADL), SysML (SysML),
MARTE (MARTE), ARText (ARText) and AUTOSAR (AUTOSAR). Different tools are included
since everyone has different strengths with respect to modelling, algorithmic capabilities, etc. On
the other hand, early verification and validation is applied during the design process of the safe
adaptive system; especially important in safety-critical systems where dynamic reconfiguration
might impair safety, verification and validation throughout the design process.

This document includes:

• An introduction for the Task 4.2 “Specification of the design process for safe adaptive
embedded systems and tool support for V&V adaptive system behaviour”

• Terms and definitions needed to understand the concepts described in this document.

• Detailed description of the tools included in the SafeAdapt Tool Chain.

• Work-flow guidelines, according to the ISO 26262 standard, for the modelling, design,
verification and validation of adaptive critical systems.

• The most common ways of using the SafeAdapt Methodology by industry.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

10

1 Introduction

The promising advent of fully electric vehicles also means a shift towards fully electrical control of
existing and new vehicle functions. In particular, critical X-by-wire functions require sophisticated
redundancy solutions. As a result, the overall Electric/Electronic (E/E) architecture of a vehicle is
becoming even more complex and costly.

The main idea of SafeAdapt (Safe Adaptive Software for Fully Electric Vehicles) is to develop novel
architecture concepts based on adaptation to address the needs of a new E/E architecture for Fully
Electric Vehicles (FEVs) regarding safety, reliability and cost-efficiency. This will reduce the
complexity of the system and the interactions between its functions by generic, system-wide fault
and change handling. It also enables extended reliability despite failures, improvements of active
safety, and optimized resources. This is especially important for increasing reliability and efficiency
regarding energy consumption, costs and design simplicity.

SafeAdapt follows a holistic approach for building adaptive systems in safety-critical environments
that comprises methods, tools and building blocks for safe adaptation. The technical approach
builds on a SafeAdapt Platform Core, encapsulating the basic adaptation mechanisms for re-
allocating and updating functionalities in the networked, automotive control systems. This will be
the basis for an interoperable and standardized solution for adaptation and fault handling in
AUTOSAR (AUTOSAR). Although it is not initially covered by the project, the SafeAdapt approach
also considers functional safety with respect to the ISO 26262 standard (International Organization
for Standardization (ISO), 2011) to support the certification of safety-critical systems in the e-
vehicle domain.

SafeAdapt provides an integrated approach for engineering such adaptive, complex and safe
systems, ranging from tool chain support, reference architectures, modelling of system design and
networking, up to early validation and verification. For realistic validation of the adaptation and
redundancy concepts, an actual vehicle prototype with different and partly redundant applications
is developed.

1.1 Document scope

The purpose of this document is to define the development, verification and validation processes
for safe adaptive embedded systems, that is, which tool should be used for which purpose and
how the different tools interact within a common tool chain. Thus, enabling the certifiability of
adaptive embedded systems in the automotive domain with special focus on fully electric vehicles
regarding ISO 26262.

One of the main SafeAdapt project objectives is to empower developers to create safety-critical
software more efficiently by reducing costs and coping with certification requirements. As said
above, the proposed SafeAdapt Methodology fully addresses the ISO 26262 standard and it is
supported by tools used for different steps from requirements to detailed software and hardware
implementation and validation. On the one hand, system and components design is based on well-
known standards such as UML (UML), EAST-ADL (EAST-ADL), SysML (SysML), MARTE
(MARTE), ARText (ARText) and AUTOSAR. Different tools are included since everyone has
different strengths with respect to modelling, algorithmic capabilities, etc. On the other hand, early

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

11

verification and validation is applied during the design process of the safe adaptive system;
especially important in safety-critical systems where dynamic reconfiguration might impair safety,
verification and validation throughout the design process. It should be considered that functional,
non-functional, and trustworthiness properties need to be ensured even during reconfiguration
transitions.

1.2 Document outline

The remainder of the report is structured as follows:

• Section 2 includes terms and definitions that provide the necessary background required to
properly understand the concepts described in this document.

• In section 3, the tools included in the SafeAdapt Tool Chain are presented. These tools
support the modelling, design, verification and validation of adaptive critical systems. In
addition, the tools are depicted along the ISO 26262 lifecycle.

• Section 4 provides detailed insight into the tools. For every tool it is provided a general
description, its position along the V-lifecycle and the managed inputs and outputs artefacts.

• Section 5 provides the work-flow guidelines for the design process and support of
verification and validation phases. The aim is to help users to start working with the
SafeAdapt Tool Chain, guiding their actions according to the ISO 26262 standard.

• In section 6 the most common ways of using the SafeAdapt Methodology by industry are
presented.

• Section 7 drafts final conclusions.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

12

2 Terms and Definitions

Term Definition

Architecture Representation of the structure of the item or functions or systems or
elements that allows identification of building blocks, their boundaries and
interfaces, and includes the allocation of functions to hardware and
software elements (ISO 26262).

Automotive
Safety Integrity
Level

An Automotive Safety Integrity Level (ASIL) represents an automotive-
specific risk-based classification of a safety goal as well as the validation
and confirmation measures required by the standard to ensure
accomplishment of that goal.

Component-
ISO

ISO 26262 defines a Component-ISO as a non-system level element that
is logically and technically separable and is comprised of more than one
hardware part or more software units. A component is part of a system.

Element System or part of a system, including components, hardware, software,
hardware parts, and software units -- effectively, anything in a system
that can be distinctly identified and manipulated.

Error Discrepancy between a computed, observed or measured value or
condition, and the true, specified or theoretically correct value or
condition.

Failure Termination of the ability of an element to perform a function as required.
Note: Since an element's specification defines its required function, the
standard recognizes incorrect specification as a potential a source of
failure.

Fault Abnormal condition that can cause an element or an item to fail.

Functional
Safety

Absence of unreasonable risk due to hazards caused by malfunctioning
behaviour of Electrical/Electronic systems.

Hazardous
Event

A hazardous event is a relevant combination of a vehicle-level hazard
and an operational situation of the vehicle with potential to lead to an
accident if not controlled by timely driver action.

Item Item is used to refer to a specific system or array of systems that
implements a function at vehicle level to which the ISO 26262 Safety Life
Cycle is applied. That is, the item is the highest identified object in the
process and is thereby the starting point for product-specific safety
development under this standard.

Malfunctioning
Behaviour

Failure or unintended behaviour of an item with respect to its design
intent. Hazard Potential source of harm caused by malfunctioning
behaviour of the item.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

13

Safety Goal A safety goal is a top-level safety requirement that is assigned to a
system, with the purpose of reducing the risk of one or more hazardous
events to a tolerable level.

Safety
Requirement

Safety requirements include all safety goals and all levels of
requirements decomposed from the safety goals down to and including
the lowest level of functional and technical safety requirements allocated
to hardware and software components.

Validation Process of evaluating the system impact e.g., on safety. That is,
validation checks and tests whether the system "does what it was
designed for“, quoted by the performance indicators (based on user
needs).

Vehicle Reference to a passenger car that can be either simulated or a real
vehicle.

Verification Describes the test of a system/function against its requirements.

Determination of completeness and correct specification or
implementations of requirements from a phase or subphase.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

14

3 Tool Chain

3.1 Description

SafeAdapt provides tool support and a methodology to ensure that innovative architecture
solutions are equally assisted in the design process. The SafeAdapt Tool Chain includes
modelling, design and validation support. This tool uses a model-based design flow, which is
complemented by pre-existing AUTOSAR tool-chains, to design adaptivity. Moreover, the
SafeAdapt approach enables early verification and validation of the systems non-functional
requirements such as adaptability.

In brief, the SafeAdapt Tool Chain is composed of the following tools presented in alphabetical
order in Table 1.

Tool Purpose

Arctic Studio
(ARCCORE)

AUTOSAR modelling and code generation.

ARTOP AUTOSAR reference implementation. Based on Eclipse

AUTOSAR
Gateway

Export AUTOSAR from UML/EAST-ADL models (Papyrus add-on)

composeR
(SIE)

Safety analysis tool compliant to FTA analysis as defined by various
standards such as IEC 61508 or ISO 26262.

Dynacar RT
(TEC)

Help during SW and HW testing phase. Configurable vehicle model
running in a real-time system. Models from third parties (Simulink,
Dymola) can be integrated on the same platform.

ERNEST
(ESK)

Verification and validation of non-functional properties of networked
embedded systems at early design stages.

FMEDAexpress
(SIE)

Safety analysis tool for FME(D)A analysis according to IEC 61508 or ISO
26262.

Papyrus
(CEA)

General purpose UML modelling tool supporting SysML (including SysML
specific diagrams), MARTE and EAST-ADL profiles. Moreover, it offers
several possibilities to customize the user interface.

Prossurance
(TEC)

Safety assurance management system. Prossurance supports
compliance assessment and certification of safety-critical products.
Construction of safety cases.

Qompass
(CEA)

Design tool for model transformation and code generation. Qompass
helps to deploy component-based systems taking into account SW and
HW architecture. The tool supports realizing arbitrary interactions
between software components. Qompass also supports a separation of
concerns by enabling containers that embed the original component and

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

15

intercept its communication with the environment as well as offering
additional service.

Sophia Safety analysis, supports FTA analysis (Papyrus add-on)

TTE-Tools
(TTT)

Tool for generation of a valid network configuration for end systems and
switches for time-triggered-, rate-constrained and best-effort Ethernet
based networks.

UNISIM-VP
(CEA)

Cross-platform open source simulation environment. Its purpose is to be
used during co-design, integration and validation of hardware/software
systems.

The simulation environment comprises a set of tools and services such
as program loaders, OS ABI translators, instrumentation and graphical
debugger.

XMT
(SIE)

Model oriented system design.

Table 1. SafeAdapt tools

3.2 Tools along the ISO 26262 lifecycle

Figure 1 presents an overview of the SafeAdapt tools regarding the design, implementation and V&V flow.

Figure 1: SafeAdapt tools overview

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

17

4 Detailed Description of Tools

4.1 Arctic Studio

4.1.1 General description

The Arctic Studio tool chain provides a complete software development environment for
automotive embedded software solutions based on the open industry-leading standard AUTOSAR.
The tool chain supports all stages of an automotive Information and Communication Technology
(ICT) project and provides tools for different types of tasks, such as application development,
embedded platform development, and system integration.

4.1.2 Tool along the lifecycle.

Arctic Studio is applied during the development phase of the lifecycle. This tool addresses ISO
26262, part 6 Product development at software level, phase 6-7 Software architectural design.

4.1.3 Artefacts metamodel

• Full access to AUTOSAR arxml files through the Artop open source project

• Wizards for creating AUTOSAR projects and AUTOSAR files

• Full support for handling configurations split into multiple files

• AUTOSAR viewer with possibility to walk through the AUTOSAR configuration in a tree
view

• Support of AUTOSAR standard version 4.0.2, 4.0.3 and 4.1.1

4.1.4 Inputs

As an input Arctic Studio requires AUTOSAR configuration files that where either imported using
arxml files or created inside of ArcticStudio.

Furthermore, ArcticStudio supports the import of "Software Component Description" files (ARText)
and provides importers for communication matrices in form of AUTOSAR ECU extract and CANdb
files.

4.1.5 Outputs

The end result of the Arctic Studio tool chain is a configuration dependent RTE in form of C-code
and a compiled, linked, and executable binary image (ELF) for the target platform.

4.2 composeR

4.2.1 General description

composeR is a safety analysis tool compliant to FTA analyses as defined by various standards
such as IEC 61508 and ISO 26262.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

18

composeR works standalone with no other information provided, but it is also able to do a
compositional safety analysis based on development artefacts such as SysML IBD or UML
Composite Structure Diagrams (CSD).

composeR is based on ESSaRel (The ESSarel research project & tool) and it has been developed
with Eclipse/Magic Draw Plugin technologies.

4.2.2 Tool along the lifecycle.

This tool addresses the following parts of ISO 26262:

• Part 3. Concept phase, sub-phase 3-8 Functional safety concept (supporting the derivation of
functional safety requirements).

• Part 4. Product development at system level phase, sub-phases 4-7 System design (system
design verification), and 4-9 Safety validation.

• Part 5. Product development at hardware level phase, sub-phases 5-9 Evaluation of safety
goal violations due to random hardware failures.

• Part 6. Product development at software level phase, sub-phase 6-7 Software architectural
design (efficiency verification of the safety mechanisms).

• Part 9. ASIL-oriented and safety-oriented analyses, sub-phases 9-7 Analysis of dependent
failures and 9-8 Safety analyses.

4.2.3 Artefacts metamodel

The information is stored as XML file. In addition, import and export utilities are available
(information format can be both EMF models and XML file).

4.2.4 Inputs

composeR requires as input (automated) XML-based information on design artefacts (IBD/CSD)
on .mdzip files and (manually) information on safety behaviour using FTA/FMEA.

4.2.5 Outputs

composerR delivers as output (regarding the analysis) top event probabilities, minimal cut sets or
FIT rates for part count. To sum up, composeR enriches XML file with failure information to be
used in different tools.

4.3 Dynacar RT

4.3.1 General description

The tool has been developed to help during the SW and HW testing phases. It is a configurable
vehicle dynamics model running in a real time (1 millisecond execution) system (PXI from National
Instruments). Models from third party software (Simulink, Dymola) can be integrated on the same
platform. The system has several outputs which can be used as virtual sensors. These sensors
can be connected to other software (SIL) or Hardware (HIL).

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

19

The model runs on a real time platform from National Instruments (PXI) and has been created
using Labview RT. It runs over the Veristand platform which helps in model integration and
connectivity.

Tecnalia develops the SW and uses it for prototyping.

4.3.2 Tool along the lifecycle

Dynacar RT can be used for SIL and HIL testing:

• SIL: The model can be connected with controller and vehicle subsystem virtual models for
software verification.

• HIL: Due to the PXI connection capabilities it can be easily connected to real components
and ECU controllers in combination with virtual components for HIL testing.

This tool addresses the following parts of ISO 26262:

• Part 4. Product development at system level phase, sub-phase 4-9 Safety validation.

• Part 6. Product development at software level phase, sub-phases 6-9 Software unit testing
(test environment for software unit testing – SIL & HIL), 6-10 Software integration and
testing (test environment for software integration testing – SIL & HIL) and 6-11 Verification
of software safety requirements (test environment).

4.3.3 Artefacts metamodel

The model inputs/outputs can be linked internally using Veristand (from National Instruments) in
case of being provided by another external model installed on the same HW or can be linked using
any kind of communication, CAN, PROFIBUS, FLEXRAY, ETHERNET, Analog/Digital signals, etc.
All the outputs can be selected and stored internally on the real time controller (PXI) in TDMS
format (proprietary format from National Instruments for logging data) and can be easily exported
into Matlab, Excel, etc. Then the tests can be analysed through the logged data.

4.3.4 Inputs

Dynacar RT is a virtual rolling chassis with component models (engine, transmission, brakes,
steering, suspension and tires). Users can substitute the default models with their own models.

Several inputs are available for model integration and vehicle control that are sorted according to
the following components:

• Aerodynamics

• Auto

• Brakes

• Controls

• Engine

• Friction

• Tires

• Gearbox

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

20

• Powertrain

• Torque Transfer Device

4.3.5 Outputs

Several outputs are available for virtual sensors and models which are sorted according to the
following components:

• Aerodynamics

• Brakes

• Chassis motion

• Controls

• Logitech steering wheel (G27)

• Ground and Road

• Powertrain

• Simulation

• Steering

• Tires

• Wheels

4.4 ERNEST

4.4.1 General description

ERNEST is a simulation-based analysis tool for the verification and validation of non-functional
properties of networked embedded systems. ERNEST checks, for instance, if given timing
constraints are fulfilled.

The framework is compatible with EAST-ADL and an AUTOSAR-Connection is in prototype state.

The simulation framework is written in C++ and uses SystemC.

The whole tool is delivered as Eclipse plug-ins and uses standard Eclipse technologies like EMF,
Ecore, Xtend and CDT.

4.4.2 Tool along the lifecycle.

ERNEST is used at early design stages in order to evaluate the system architecture and verify the
system’s non-functional properties.

This tool addresses the following parts of ISO 26262:

• Part 4. Product development at system level phase, sub-phases 4-7 System design
(system design verification) and 4-9 Safety validation

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

21

4.4.3 Artefacts metamodel

The ERNEST framework is based on a specific meta-model which describes the system
architecture and constraints and it is developed using the Ecore standard. Architectures description
modelled in EAST-ADL or AUTOSAR can be transformed into the ERNEST input model format via
model-to-model-transformations.

4.4.4 Inputs

ERNEST uses architecture descriptions and constraints are described via the ERNEST format
(metamodel), as input for realizing its analysis. This information can be generated from e.g. EAST-
ADL or AUTOSAR models via model-to-model transformations.

4.4.5 Outputs

As a result of the analysis after the simulation, ERNEST provides a visualization mechanism with
an overview of the given constraints. The visualization shows at which point during the simulation
timing constraints have not been fulfilled. Furthermore, ERNEST is able to back propagate this
information into the input model, to mark the connections and functions related to the failed timing
constraints.

4.5 FMEDAexpress

4.5.1 General description

FMEDAexpress is a safety analysis tool for FMEDA analysis according to IEC 61508 or ISO
26262.

FMEDAexpress has been developed with C#.

4.5.2 Tool along the lifecycle.

This tool addresses the following parts of ISO 26262:

• Part 3. Concept phase, sub-phase 3-8 Functional safety concept (supporting the derivation
of functional safety requirements and the choice of the best concept alternative).

• Part 4. Product development at system level phase, sub-phases 4-7 System design
(system design verification) and 4-9 Safety validation.

• Part 5. Product development at hardware level phase, sub-phases 5-8 Evaluation of the
hardware architectural metrics and 5-9 Evaluation of the safety goals violations due to
random hardware failures.

• Part 6. Product development at software level phase, sub-phase 6-7 Software architectural
design (efficiency verification of the safety mechanisms).

• Part 9. ASIL-oriented and safety-oriented analyses, sub-phase 9-8 Safety analyses

4.5.3 Artefacts metamodel

FMEDAexpress manages information on XML files and it can be accessed using SQL.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

22

4.5.4 Inputs

FMEDAexpress requires as input involved components, failure modes, effects and
countermeasures. All these pieces of information are provided manually. In addition,
FMEDAexpress can import parts or component lists with failure modes given in XML format.

4.5.5 Outputs

FMEDAexpress delivers as output: dangerous detected/dangerous undetected failure rates,
Single-point fault metric (SPFM), Latent-fault metric (LFM), Probabilistic Metric for random
Hardware Failures (PMHF), Diagnostic Coverage (DC), FMEDA report. Together with this
information, the tool also provides some extra reliability information: Mean Time Between Failures
(MTBF), Mean Time To Failure (MTTF) and so on. In addition, entire data is available in XML
format to be further processed in other tools.

4.6 Papyrus

4.6.1 General description

Papyrus is a general purpose UML modelling tool. It consists of a set of Eclipse plug-ins. It
supports the UML extension mechanisms in the form of profiles and offers several possibilities to
customize its user interface. In particular, Papyrus supports the profiles SysML (including SysML
specific diagrams), MARTE and EAST-ADL.

Papyrus is an official Eclipse project and it is available within the Eclipse modelling bundle. Within
the scope of SafeAdapt project, Papyrus 1.0.x coming with Eclipse Luna will be used. More
information about Papyrus can be found on Eclipse.org/papyrus. It is the base for the model
transformation and code generation tool Qompass, which is presented in Section 4.8.

4.6.2 Tool along the lifecycle.

The tool is used to manage the system model. It exports models towards AUTOSAR and receives
results from the simulation tools ERNEST and UNISIM-VP.

This tool addresses the following parts of ISO 26262:

• Part 3. Concept phase, sub-phases 3-5 Item definition, 3-7 HARA and 3-8 Functional safety
concept.

• Part 4. Product development at system level phase, sub-phases 4-6 Specification of the
technical safety requirements, 4-7 System design and 4-9 Safety validation.

• Part 6. Product development at software level phase, sub-phase 6-6 Specification of the
software safety requirements.

4.6.3 Artefacts metamodel

Papyrus 1.0.x uses the UML 2.5 meta-model, SysML 1.2, MARTE 2.1.12 and EAST-ADL 2.

4.6.4 Inputs

System/application model in form of UML 2.5 model. Simulation results (format needs to be
defined).

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

23

4.6.5 Outputs

The output of the Papyrus base tool is an updated UML or SysML model. However, Papyrus has
several add-ons, notably Qompass described below and an AUTOSAR gateway. The latter allows
exporting AUTOSAR models in form of UML models applying an AUTOSAR profile or in form of an
XML file compatible with ARTOP, the standard AUTOSAR implementation within Eclipse.

4.7 Prossurance

4.7.1 General description

Prossurance is a safety assurance management system to support a cost-effective compliance
assessment and certification of safety-critical products in sectors such as aerospace, railway,
maritime and automotive.

Prossurance can work in two different ways: as a file-based or database-base (Postgress) tool.
This tool has been developed with the following technologies: Eclipse with GMF and EMF, XText,
Subversion (SVN) Team Provider for artefact versioning if desired, a subversion client such as
TortoiseSVN, Java Environment 1.7 and Windows Operating System.

Prossurance is a set of solutions built on top of the OPENCOSS project (OPENCOSS project).

4.7.2 Tool along the lifecycle

Since Prossurance addresses the construction of safety cases, it is used along all phases of the
system concept and development processes. Due to the complexity of this, in SafeAdapt the focus
will be on the Safety Concept (sub-phases 3-5 Item definition, 3-7 HARA and 3-8 Functional safety
concept).

4.7.3 Artefacts metamodel

Proprietary metamodel including concepts of: regulations, general standards, company
procedures, etc.

Mainly files in common formats (Word, Excel, PDF, txt…) are used to register pieces of evidence.

Prossurance manages the following own formats:

• EMF for managing and persisting semantic data at a higher level of abstraction

• GMF for notation with diagramming data that represents shapes and connections displayed
in graphical editors

• XText for the use of restricted language and structured property descriptions to support
compositional certification.

4.7.4 Inputs

• Standards, Regulations and Company Procedures are manually transformed into
Prossurance concepts.

• Argumentation Patterns are used as a way for reusing successful safety strategies.

• Safety Argument Contracts are used in case of modular/compositional certification.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

24

• Work Products are stored and managed as artefacts/pieces of evidence.

4.7.5 Outputs

Users can save diagramming data as images that can be inserted/copied to any report. In addition,
data are available in EMF (models), GMF (notations) and XText formats.

4.8 Sophia for Papyrus

4.8.1 General description

Sophia is a framework devoted to Model Based Safety Assessment Support. Sophia is fully
integrated with the Papyrus modelling tool (see section 4.4) and provides dedicated modules to
support the various safety assessment techniques (FMEA, FTA, qualitative and quantitative
reliability analysis) used to satisfy certification requirements and covering different stages of safety
assessment life-cycle according to different standards. These modules are provided as various
Eclipse features that can be embedded within an Eclipse environment. Safety modelling is based
on dedicated UML profiles applied on the existing system design model. These profiles can be
applied either on a SysML model or on DSLs implemented using UML profiles extension
mechanisms. Various analyses are achieved either directly or using external formal tools in an
integrated way through dedicated gateways (languages supported are AltaRica and SMV); results
are presented within the modelling environment.

It is currently not clear, whether we will use of Sophia within SafeAdapt. Therefore we will focus on
the other safety analysis tools in chapter 5.

4.8.2 Tool along the lifecycle.

The tool is used to perform different kinds of safety analysis required at the various stages of the
safety assessment life-cycle (Preliminary Hazard analysis, FMEA, FTA, minimal cut-sets, critical
sequences).

Sophia promotes an innovative cooperative approach of safety assessment and system design
processes. The two processes share a common model of architecture and safety assessment
starts at early stages to issue recommendations or refined safety requirements to design process,
while designers evaluate the impact of possible solutions taking into account other evaluation
criteria such as performance or real-time issues.

Technically, Sophia provides seamless means to build a safety model from the design architecture
model using dedicated annotations and provides tools or gateways to formal tools (ARC, NuSMV,
xFTA) to produce artefacts for safety justification. Moreover Sophia provides automatic
documentation generation.

Main features are:

• Safety Requirements modelling and traceability

• PHA (Preliminary Hazard Analysis)

• FTA (Fault-tree Analysis – Automatic fault-tree generation from annotated model) and
minimal cut-sets computation

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

25

• FME(C)A (Failure Modes, Effects and Criticality Analysis)

• Safety properties Analysis using model-checking tool

Sophia is compatible with ISO 61508 standard and provides support for ISO 26262 and EN 50128.
The current version of Sophia provides support for the following parts of ISO 26262:

• Part 3-7 HARA and 3-8 Functional safety concept.

• Part 4. Product development at system level phase, sub-phases 4-6 Specification of the
technical safety requirements, 4-7 System design and 4-9 Safety validation.

• Part 6. Product development at software level phase, sub-phase 6-6 Specification of the
software safety requirements.

4.8.3 Artefacts metamodel

Papyrus 1.1.x uses the UML 2.5 meta-model, SysML 1.2, MARTE 2.1.12 and EAST-ADL 2. Sophia
handles SysML models and dedicated DSLs based on UML/SysML. The approach could also be
applied to EAST-ADL but it would be wiser to study a way of adapting Sophia to its error-model.
The general annotation for error propagation is quite similar to that provided in EAST-ADL, but
Sophia is richer regarding FMEA and quantitative analysis artefacts. Sophia annotations for
propagation analysis can also be applied to hardware models. The framework is fully integrated
with Papyrus and is extensible to support added functionalities.

4.8.4 Inputs

System/application model in form of UML 2.5 model and safety annotations provided using
dedicated profile. For FMEAS inputs can be provided from excel sheets.

4.8.5 Outputs

The output of the Sophia tool depends on the analysis performed. Dedicated documentation is
generated according to the type of analysis. Results are displayed within the Papyrus tool and can
be consulted either by safety experts or by designers. Fault-trees are generated in OpenPSA
format which is an exchange format used by several RAMS tools such as xFTA or GRIF. Exports
of FMEAs can also be achieved in excel format.

Safety Requirements can be consulted from the design view of the system and allocated to
components.

4.9 Qompass

4.9.1 General description

Qompass is a design tool for model transformation and code generation. The Qompass tool helps
designers to deploy component-based systems. This means that designers take into account not
only the SW architecture but also the HW architecture and allocation of SW to HW. The tool has a
support for realizing arbitrary interactions between software components. These interactions are
defined in a model library. Thus, it is possible to target multiple middleware technologies, e.g.
interaction styles used in automotive domain, e.g. communication via the AUTOSAR virtual
function bus (though not realized yet). Qompass also supports a separation of concerns by

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

26

enabling containers that embed the original component and intercept its communication with the
environment as well as offering additional service. Containers in the context of SafeAdapt could
serve two purposes:

• Provide additional information about a component (“self-X”), in particular non-functional
information such as the resource usage and timing constraints. This information can be
used to support reconfiguration decisions at runtime, such as the eligibility of components
to execute on a certain node. The sum of this additional information provide a kind of
model@runtime

• Support the implementation of safe reconfiguration algorithms that assure consistency
during the migration of components with a state from one node to another. For instance,
Quiescence developed by Kramer blocks new components requests, waits for ongoing to
finish and then copies the component state and retargets connections. The interception
facilities of a container shall use the runtime mechanisms provided by the safe adaptation
core.

Qompass also supports the generation of C/C++ code. However, such code is probably not used in
the context of SafeAdapt (except for some experimentation), as code is primarily generated from
AUTOSAR tools.

4.9.2 Tool along the lifecycle.

This tool is used in combination with Papyrus tool. So, for further details consult Papyrus tool.

4.9.3 Artefacts metamodel

Qompass takes component, platform and allocation descriptions defined in UML 2.4 or UML 2.5
format enriched with FCM and MARTE profile.

4.9.4 Inputs

Qompass takes system model in form of component, platform and allocation descriptions defined
in UML 2.5 format enriched with EAST-ADL, FCM and MARTE.

4.9.5 Outputs

Results of the model transformations, e.g. added adaptation-aware interaction components and
reflective information (model@runtime). The models are UML 2.4/2.5 models conforming to the
standard Eclipse UML2 plugin.

4.10 TTE-Tools

4.10.1 General description

Classification of the TTEthernet tool suite: Design tools

Compatible with standard: TTEthernet is an SAE standard (SAE AS6802)

The TTEthernet development tool suite is a product offered by TTTech Computertechnik AG. The
SafeAdapt project will use the TTEthernet tool suite for the configuration of the data
communication conducted via TTEthernet traffic and across TTEthernet based electronic switches,

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

27

end systems and control units. The detailed user manuals for the TTEthernet tool suite are
delivered in combination with any TTEthernet tool delivery (license).

Basically the TTEthernet tool suite consists of:

• TTEPlan: TTEPlan is the TTEthernet network planning tool. Based on input provided to the
tool, TTEPlan creates the whole network configuration databases.

• TTEBuild: TTEBuild allows converting XML-based device configuration database files into
binary configuration images required by the TTE Switches and the TTE End Systems.

• TTELoad: TTELoad is an application suitable to configure a TTE Switch based on
TTEthernet switch IP that also supports bootstrap configurations of TTE Switches.

A general overview is provided in SafeAdapt deliverable D2.3 “Requirements for the Design
Process and Tools for Safe Adaptation”.

4.10.2 Tool along the lifecycle.

The TTEthernet tools enable the developer / design engineer to conduct seamless design, create
configuration and provide data loading for TTEthernet based networks. The tools are built around
open XML data bases.

These tools fully address the “6-8 Software unit design and implementation” part of ISO 26262 in
relation with communications topic.

4.10.3 Artefacts metamodel

The TTEthernet Tools use XML file format as a representation of the binary code needed for the
network and device configuration for easy and direct human readability. HEX or BIN file formats
resulting from the TTEBuild Device Configuration tool can be used for direct download to the
switches.

Third party tools can be used as well in order to add or modify configuration of the parameters.

4.10.4 Inputs

TTEPlan: configuration data by human, interactively lead input routines for the network
configuration.

TTEBuild Network Configurator: TTEPlan XML output file.

TTEBuild Device Configurator: TTEBuild Network Configurator output XML file.

4.10.5 Outputs

TTEPlan: XML representation of the schedule file including requirements.

TTEBuild Network Configurator: XML representation of the network configuration file set.

TTEBuild Device Configurator: XML representation of the target device switches and end-systems
as well as one binary device configuration image per device in the network in BIN or HEX format.
They can be used for direct download to the TTEthernet switches and can be used in combination
with the End-system drivers.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

28

4.11 UNISIM-VP

4.11.1 General description

UNISIM-VP is a cross-platform open source simulation environment based on SystemC industry
standard. Its purpose is to be used during co-design, integration and validation of
hardware/software systems.

The simulation environment comprises a set of tools and services such as program loaders, OS
ABI translators, instrumentation and graphical debugger. Supported hosts are Windows, Linux and
Mac OS X.

The available platforms are MPC755, MPC7447A, PPC440, Virtex-5 FXT, ARM7, ARM9, Star12X,
TMS320C3X.

4.11.2 Tool along the lifecycle.

The UNISIM-VP simulation environment will be used to emulate the targeted hardware platform
and hence to execute the embedded software.

UNISIM-VP can serve as a foundation of a virtual validation environment, because it can be
interfaced to test cases generators for a better fault coverage and to runtime verification tools for
diagnosis of defects. Additional information about the use within SafeAdapt can be found in section
6.2.

The main use cases are:

 Non-intrusive debugging and testing of software: Unmodified software can be debugged
and tested using UNISIM-VP simulators without affecting either its functional or temporal
behavior. Thanks to services, the user can drive simulation, profile the software, inspect the
system status, instrument system under study (hardware pins, program variables, registers,
etc.), and then analyze the result (trace analysis)

 Hardware/software integration: The software stack can be debugged and tested within a
representative hardware environment before the availability of the physical target hardware

 Development of SystemC IPs (intellectual property) and new virtual platforms: UNISIM-VP
is an open source (BSD license) simulation environment that comprises a SystemC module
library, and a set of services (debugging, loaders…). It can be a foundation for the
development of new SystemC IPs and new virtual platforms

 Support the simulation of hardware faults using component attributes (parameters). These
attributes are used to notify the simulator engine of the occurrence of a hardware fault. At
each fault occurrence, respective architecture specific flags are set.

4.11.3 Artefacts metamodel

There are difference levels at which UNISIM-VP architecture is described:

 The hardware structure: description of hardware components (processor, memory …) and
their interconnections. UNISIM-VP virtual platforms are interfacing third party tools using
SystemC/TLM2 standards. An engineer has to write specific SystemC module to interact
through hardware interface.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

29

Today there is no generic meta-model, works are planned to generate the top-level
simulator file from UML/MARTE models.

 Configuration of hardware, i.e. configure clock frequencies or memory size: Described by
XML files corresponding to a small schema definition.

 Ad hoc simulation module is used to supporting hardware fault strategy.

4.11.4 Inputs

Embedded software binary with debugging information.

1. Full stack application software

2. Simulator configuration XML file corresponding to an XML-Schema (see second bullet in
preceding section)

4.11.5 Outputs

Embedded software execution trace (instructions, software symbols, hardware registers, hardware
interface).

4.12 XMT - The CHROMOSOME Modelling Tool

4.12.1 General description

CHROMOSOME stands for Cross-domain Modular Operating System or Middleware. XMT is the
Eclipse-based model-driven design tool of CHROMOSOME with automatic code generation
capabilities for static configuration of the target system. CHROMOSOME has a large set of
designated features and is designed to evolve over time. It is completely open source and hence
transparent to developers and end users.

4.12.2 Tool along the lifecycle.

CHROMOSOME (often abbreviated by XME) is a domain-independent, data-centric middleware for
cyber-physical systems. From the point of view of an application component, CHROMOSOME
abstracts from basic functionality that is traditionally found in operating systems and middleware,
like scheduling and communication. Apart from that, it offers model-driven design tools with code
generation capabilities that allow a user to design the distributed system in an abstract way. So, it
is related to the phase of “product development at software level”.

4.12.3 Artefacts metamodel

Currently there is no data exchange with other tools in the toolchain available. Software
components are modelled manually and the output is target code.

4.12.4 Inputs

The tool requires information about software components and how functions interact with each
other. There is no automated import for information from other tools.

4.12.5 Outputs

The output is target code.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

30

5 Guidelines and Methodology

This section provides our work-flow guideline for the design process and support of verification and
validation phases. The aim is to help users to start working with the SafeAdapt Tool Chain, guiding
their actions according to ISO 26262 "Road vehicles – Functional safety".

This standard is intended to be applied to safety-related systems that include one or more
electrical and/or electronic (E/E) systems and that are installed in series production passenger cars
with a maximum gross vehicle mass up to 3 500 kg. ISO 26262 does not address unique E/E
systems in special purpose vehicles such as vehicles designed for drivers with disabilities.

ISO 26262 defines functional safety for automotive equipment applicable throughout the lifecycle
(management, development, production, operation, service, decommissioning) of all automotive
electronic and electrical safety-related systems. It aims to address possible hazards caused by
malfunctioning behaviour of E/E safety-related systems, including interaction of these systems.

More precisely, it is a risk-based safety standard, where the risk of hazardous operational
situations are qualitatively assessed and safety measures are defined to avoid or control
systematic failures and to detect or control random hardware failures, or mitigate their effects.

To this end, it comprises around 750 clauses on approximately 450 pages, 9 normative parts and a
guideline as the 10th part. ISO 26262 is based upon an industry-standard V-model as a reference
process model as it is shown in Figure 2.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V adaptive system behavior

31

Figure 2: Overview of ISO 26262

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

32

One of the main SafeAdapt project objectives is to empower developers to create safety-critical
software more efficiently by reducing costs and coping with certification requirements. As said
above, the proposed SafeAdapt Methodology fully addresses the ISO 26262 standard and it is
supported by an integrated tool chain that follows a model-based design flow, which is
complemented by pre-existing AUTOSAR tool chains. Specifically, SafeAdapt Methodology
focuses on the following phases of the ISO 26262 safety life-cycle:

 Concept phase, (Part 3)

 System level development – specification, (Part 4)

 Software level development, (Part 6)

 System level development – integration and validation (Part 4)

As shown in next figure, these parts of the standard are digitalised with the Prossurance tool using
its prescriptive knowledge management functionality. Such functionality allows the management of
standards information as well as any other information derived from them, such as interpretations
about intents, mapping between standards, etc.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V adaptive system behavior

33

Figure 3: Overview of ISO 26262 in Prossurance tool

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

34

5.1 Concept phase

ISO 26262-3:2011 specifies the requirements for the Concept phase for automotive applications,
including the following:

 • item definition,

 • initiation of the safety lifecycle,

 • hazard analysis and risk assessment, and

 • functional safety concept.

As shown in next figure, the Concept phase is digitalised with the Prossurance tool using its
prescriptive knowledge management functionality. This functionality manages standards
information as well as any other information derived from them, such as interpretations about
intents, mapping between standards, etc. The process and activities which are required to be
carried out in order to address the Concept phase are defined with Prossurance tool. In addition,
required and produced assets and assurance artefacts are identified. In latter case this
identification is shown through green relationships while red dotted relationships are used in case
of required workproducts.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V adaptive system behavior

35

Figure 4: ISO 26262 Concept phase in Prossurance tool

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

36

In the following chapters detailed guidelines are presented in order to address Concept phase in
accordance with the standard.

 3-5 Item definition

As defined in the ISO 26262 standard, the Item Definition phase has two objectives. The first
objective is to define and describe the item, its dependencies on, and interaction with, the
environment and other items. While the second objective is to support an adequate understanding
of the item so that the activities in subsequent phases can be performed.

So, the first step of the safety design flow consists of identifying and describing the “item” under
development. It represents the functions, components, or (sub)systems of particular concern in
regards to functional safety. To perform the item safety analysis, it is essential to properly
understand the item itself in terms of input(s)/output(s), functionality, interfaces, environmental
conditions and to define the item target function, which is the function description in terms of
outputs behaviour. At the beginning of the safety analysis activities, the boundary of the item and
the item’s interfaces with other elements are determined.

Following a top-down approach, Papyrus and Qompass tools allow accomplishing these objectives
since they are based on SysML and EAST-ADL standards. EAST-ADL2 provides an ontology and
a concrete language for system definition and information management. The EAST-ADL2
language contains multiple levels of abstraction: VehicleLevel, AnalysisLevel, DesignLevel, and
ImplementationLevel. Each abstraction level corresponds to one specific view of the system
architecture at a particular development stage.

In addition, in SafeAdapt, Papyrus and Qompass tools are complemented with Excel templates in
order to make easier the process to non-expert users.

According to ISO 26262, the Item Definition work product should include the following information:

 The functional and non-functional requirements of the item as well as the dependencies
between the item and its environment shall be made available.

 The boundary of the item, its interfaces, and the assumptions concerning its interaction with
other items and elements, shall be defined considering.

The first step begins with the item’s target feature definition (the feature description in terms of the
vehicle’s output(s) behaviour) as it is shown in Figure 5.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

37

Figure 5: Target features definition in Papyrus tool

To carry out these activities, the following process has been set up in order to capture the
requirements:

 One partner has been chosen as responsible for the integration of all contributions. This
action should be done in a regular base and exceptionally when a requirements review
meeting was arranged.

 There is a Requirements mother file template (in Excel format) as a basis where
changes/enhancements should be specified.

 The current version of the requirements will be stored in the file named as
[date]_SafeAdapt_Requirements_V[xy].xlsx (i.e. "2014-03-28_SafeAdapt_Requirements
_V01.xlsx"). In this way versions shall be recognizable by its date and its version number.

 The specific partners contributions will be stored in a file following name syntax:
[date]_SafeAdapt_Requirements_V[xy]_[Companyacronym].xlsx (i.e.: "2014-03-
28_SafeAdapt_Requirements _V01_TTT.xlsx"). As a first action prior to make
modifications, the mother file will be always copied under the partner specific file name and
then it is possible to start working. Everything new will be marked with red colour.

 The partner responsible for the integration will integrate the changes into the requirements
mother file. And then, partner specific files will be stored in an auxiliary directory.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

38

As a result of this process, all functional and non-functional requirements will be specified and
reviewed. For instance, some requirements are shown in Figure 6.

Figure 6: Requirements in Excel format

Then, the specified requirements are introduced/updated into the Papyrus tool. Papyrus
differentiates between functional and quality requirements (which typically focus on some non-
functional property of the system). So, requirements can be formalized using the constraints of
EAST-ADL, including, timing, safety and behaviour. A requirement element is linked to any other
element using a Satisfy relation. A Derive relation between requirements supports tracing between
an original and derived requirement. The Refine relation links the requirement and the constraint,
or other element used to specify the textual requirement in more detail. Finally, requirements can
be grouped and structured using the RequirementContainer construct.

In this way, Figure 7 shows an example of the requirements specification.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

39

Figure 7: Requirements in Papyrus tool

Figure 8: Allocations of requirements to features in Papyrus

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

40

 3-6 Initiation of the safety lifecycle

As defined in the ISO 26262 standard, the initiation of the safety lifecycle phase has two
objectives. The first objective is to make the distinction between a new item development and a
modification to an existing item. The second objective is to define the safety lifecycle activities to
be carried out in such case.

Consequently, in case of a modification of an already existing item or its environment, an impact
analysis is required and a tailored safety lifecycle is advisable. In this special case, and according
to ISO 26262, the impact analysis shall identify and describe the intended modification applied to
the item or its environment and assess the impact of these modifications.

Therefore, with the hypothesis that the safety analysis is already available (inherited from original
item), the most convenient approach is the bottom-up one, i.e. by verifying the impact in terms of
differences in hazard list and risk assessment outcomes.

 3-7 Hazard analysis and risk assessment

In terms of ISO 26262, the objective of the hazard analysis and risk assessment is to identify and
to categorise the hazards that malfunctions in the item can trigger and to formulate the safety goals
related to the prevention or mitigation of the hazardous events, in order to avoid unreasonable risk.
As a final step, the hazard analysis, risk assessment and the safety goals should be verified.

In order to evaluate the risk associated with the item under safety analysis, a risk assessment is
carried out. A risk assessment considers the functionality of the item and a relevant set of
scenarios (operating conditions & environmental conditions). To identify hazards, the potential
sources of harm, it is helpful to define the malfunction(s) related to the item. If the item target
function(s) has been correctly identified and described, the malfunction can be always defined in
terms of anomalies of function activation. To assess the risk level, hazardous events, the hazard in
concomitance with a particular scenario, is considered.

As required by ISO 26262, for each identified hazardous event, the severity, controllability and
exposure values should be ranked, to determine the associated Automotive Safety Integrity Level
(ASIL) that shows the level of risk. It is important to remark that the controllability levels assigned to
the various situations should be assessed through specific testing on the road such as fault
injection testing. ASIL specifies the item’s necessary safety requirements for achieving an
acceptable residual risk. A risk (R) can basically be described as a function F of the frequency (f) of
occurrence of a hazardous event, the ability of avoiding the specific harm through opportune
reactions of the involved persons (C = Controllability) and the potential severity of the resulting
harm or damage (S = severity); the frequency of occurrence depends only on the probability of the
driving scenario taking place in which the hazardous event can occur (E = exposure).

During the concept phase a safety goal shall be defined for each hazardous event. This is a
fundamental task, since the safety goal is the top level safety requirement, and it will be the base
on which the functional and technical safety requirements are defined. The safety goal leads to
item characteristics needed to avert the hazard or to reduce risk associated with the hazard to an
acceptable level. Each safety goal is assigned an ASIL value to indicate the required integrity level
in consonance with which the goal shall be fulfilled. For every Safety goal a Safe state, if

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

41

applicable, shall be identified in order to declare a system state to be maintained or to be reached
when the failure is detected, so to allow a failure mitigation action without any violation of the
associated safety goal. For each safety goal and safe state (if applicable) that are the results of the
risk assessment, at least one safety requirement shall be specified.

Papyrus and Qompass tools allow accomplishing these stage objectives. In addition, these tools
are complemented with Excel templates in order to make easier the process to non-expert users.

The following process has been set up in order to apply a Hazard Analysis and Risk Assessment
(HARA) file template (in Excel format):

 Vehicles, Items and Components Identification. The different elements involved are
identified and classified according to the concepts defined in ISO 26262. These elements
are vehicle (passenger car), functional items and components.

 Situations Definition. Different situations in which a vehicle can be successfully tested are
defined. These situations relate to possible items malfunctioning and exhibiting unintended
behaviour, and will be described by operation conditions (possible factors of the
environment as well as driver and vehicle status).

 Malfunctions Identification. ISO 26262 addresses possible hazards caused by a malfunction
of a safety-critical E/E system, including interaction between such systems. Therefore, the
use cases will account for these malfunctions and subsequently identify possible conditions
or triggers that cause them. At this point, FMEDAexpress (FMEA analysis) can be used for
the extraction of new functional and non-functional hazards at item level not previously
considered.

 ASIL Determination. As it said before, the hazard analysis and risk assessment estimates
the probability of exposure, the controllability, and the severity of the hazardous events. In
conjunction, these parameters determine the ASILs of the hazardous events. At this point,
malfunctions will be associated with situations focusing on controllability, loss and
damages, and probability of exposure. With this information, the ASIL classification will be
determined. ASIL C and D will drive the use cases selection as these are at the centre of
interest.

As a result of this process, the hazard analysis and risk assessment can be conducted such as it is
shown in the following picture.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V adaptive system behavior

42

Figure 9: Preliminary HARA in Excel format

Functio
n

Location Road
conditions

Environment
Conditions

O
th
er
ch
ar

Traffic Situation Vehicle
Speed

Manoeuvres Driver condition Other
characteristics

ID Description

ACC 3 Highway Any Any

Other vehicles
[preceding,
lateral,

oncoming,
following]

V < 120 kph Overtaken
On board
medium
careful

Driver, passenger, other
drivers [vehicles,
motorcycles]

Acceleration of the
vehicle to weak

ACC3
. possible rear‐end
collision with
vehicle in front

It takes to long to
reach the target speed

QM

ACC 4 Highway Any Any

Other vehicles
[preceding,
lateral,

oncoming,
following]

V < 120 kph Any
On board
medium
careful

other car is
overtaking

us

Driver, passenger, other
drivers [vehicles,
motorcycles]

Deceleration of the
vehicle too hard

ACC4

Another car is
following the ACC‐
vehicle. Rear end
collision with the

ACC‐vehicle

Worst Case:
unintended
deceleration until
standstill due to brake
intervention

C

AEB 10 City Any Any
Other vehicles,
motor/bicycles
, pedestrian

V < 50 kph Any
On board
medium
careful

Driver, passenger, cyclist,
pedestrian, other drivers
[vehicles, motorcycles]

AEB will brake
unintentionally to full

stop
AEB2

Destabilisation of
the vehicle,
departure of the
lane, collision with
objects

Worst Case:
unintended
deceleration until
standstill due to brake
intervention

C

BMS 13 Parking na na na V = 0 kph Parking Out of board Driver, Passenger
Unintended charging of
HV‐Battery from grid

BMS1

Driver and
passangers can be
dammaged by a fire
or explosion

overcharging of
Battery‐ degassing
fire,
explosion(depending

D

ASIL Persons at RiskNr. Potential Effect
Failure/Malfunction/

Misuse (effects in terms of
functional outputs)

Hazard

Driver/Vehicle [status before failure]

Situation (Safety Relevant)

Locality

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

43

Then, the specified HARA is introduced/updated into Papyrus tool.

Therefore, it is already possible to perform a Hazard analysis and Risk assessment to preliminarily
evaluate the “safety relevance” of the Item under safety analysis. For this purpose, the hazards
should be evaluated in different scenarios for assessing Severity, Controllability and Exposure. The
hazard under analysis, when applied to the various operational situations (operative &
environmental conditions), result in the so called “Hazardous Events” (HE), as you can see in the
diagram in Figure 10.

Figure 10: Preliminary HARA in Papyrus tool

Each hazardous event has to be classified in terms of associated risk defined as its ASIL. Since
the identified hazardous events are related to a target feature, it makes sense to define (for each
hazardous event that appears safety relevant) the safety goals. In EAST-ADL2, the safety goal
artefact is modelled as a specialization of requirement. The ASIL determined for the hazardous
event should be assigned to the corresponding safety goal. ASIL and safe state are attributes of
the safety goal metaclass.

To verify the correctness and completeness of the preliminary hazard analysis and risk
assessment performed previously, a deeper analysis has to be performed, by looking at
architectural level. Therefore, the target function should be defined by deriving it from the target
feature introduced at the upper abstraction level. At this point it is possible to define the
malfunction as anomalies of the item's outputs. This serves as a more concrete basis for hazard
identification and risk assessment, and therefore offers an opportunity for validation.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

44

Note that this process may be iterative and parallel: hazards and risks may be identified and
assessed at any abstraction level, but the information is solution independent and hazards, safety
goals and safe states are managed at vehicle level.

 3-8 Functional safety concept

As defined in the ISO 26262 standard, the objective of the functional safety concept is to derive the
functional safety requirements, from the safety goals, and to allocate them to the preliminary
architectural elements of the item, or to external measures.

The functional safety concept also describes the safety measures that are needed to avoid
violation of safety goals. It shall contain assumptions about necessary driver actions if needed.
Traceability between the item feature that causes the safety relevant failure and its related safety
measures shall also be included.

So, the first step shall be to derive the functional safety requirements to fulfil the specified safety
goals based on the information given in the item definition and the results of the HARA.

Papyrus allows accomplishing these objectives as follows. Safety goals and safe states are the
results of the risk assessment. For each of these, at least one functional safety requirement must
be specified. Note that what is expressed in the ISO 26262 standard as “preliminary architectural
assumptions” is the purpose of the analysis architecture in the EAST-ADL2 language. At this level,
the goal is to verify that the functional safety concept realises all the previously defined safety
goals. More than one safety requirement could be associated with the same function.

Figure 11: Functional analysis architecture in Papyrus tool

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

45

As shown in Figure 11, the “requirement” attribute of the safety goal “safeDriving” points to the
“SafetyRelatedFunctionsMustBeAvailable” requirement (note that in general, it points to more than
one attribute). The satisfy relationship maps it to the analysis architecture.

The definition of the safety architecture should also include the specification of the warning and
degradation concept. The warning- and degradation concept is the specification of how to alert the
driver of potentially reduced functionality and of how to provide this reduced functionality to reach a
safe state. The specification of the warning and degradation concepts and the necessary actions of
the driver and other persons who are potentially at risk shall be used as input for the user manual
of the item.

A degradation concept is handled in the context of design pattern support within Papyrus (currently
experimental). More details can be found in the SafeAdapt deliverable D4.1.

On the other hand, the safety analyses performed by composeR (CFT) and
FMEDAexpress(FMEA) support the activity of deriving functional safety requirements from safety
goals and safe states (Standard, 2011).

The main focus of FMEDAexpress (FMEA) during concept phase or C-FMEA (SESAMO Project) is
the extraction of potential failures modes associated with the proposed functions or caused by
interactions between system components. This method allows the analysis of concepts in early
phases i.e. before the design is defined. In the same way, the best concept alternative can be
found. In addition to the aforementioned benefits, these safety analyses allow the identification of
system level testing requirements.

A deeper description about how to address both systematic and random hardware failures by
applying safety analysis is depicted in ISO 26262-9:2011, clause 8.

As last task of the functional safety concept a traceability based argument can be used in order to
argue about the consistency and compliance of the functional safety concept with the safety goals.
This means that if the item complies with the functional safety requirements it will comply with the
safety goals as well. In this area, Prossurance supports the easy development and maintenance of
safety case guiding the process of collecting evidence and deducing safety arguments. That
traceability based safety argumentation benefits the tight integration between system engineering,
safety analysis and safety case processes.

5.2 Product development: system level

ISO 26262-4:2011 specifies the requirements for Product Development at System Level for
automotive applications, including the following:

 • requirements for the initiation of product development at the system level,

 • specification of the technical safety requirements,

 • the technical safety concept,

 • system design,

 • item integration and testing,

 • safety validation,

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

46

 • functional safety assessment, and

 • product release

As shown in next figure, the Product Development at System Level phase is digitalised with the
Prossurance tool using its prescriptive knowledge management functionality. This functionality
manages standards information as well as any other information derived from them, such as
interpretations about intents, mapping between standards, etc. The process and activities which
are required to be carried out in order to address this phase are defined with Prossurance tool. In
addition, required and produced assets and assurance artefacts are identified. In latter case this
identification is shown through green relationships while red dotted relationships are used in case
of required workproducts.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V adaptive system behavior

47

Figure 12: ISO 26262 Product development at system level in Prossurance tool

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

48

In the following chapters detailed guidelines are presented in order to address Product
Development at the System Level phase in accordance with the standard.

 4-5 Initiation of product development at system level

The main aims of this phase are to establish and plan the upcoming subphases of system
development i.e. the specification of system architecture, the allocation of the technical safety
requirements to hardware and software together with the hardware-software interface specification.

 4-6 Specification of the technical safety requirements

The objective of this subphase is to develop the technical safety requirements, which refine the
functional safety concept considering the preliminary architectural design.

Moreover, a second objective is to verify through analysis that technical safety requirements
comply with the functional safety requirements.

In SafeAdapt, the technical safety requirements are introduced/updated into the Papyrus tool as
shown in previous Figure 7. Papyrus differentiates between functional and quality requirements
(which typically focus on some non-functional property of the system). The user can specify
several types of relationships. A requirement element is linked to any other element using a Satisfy
relation. A Derive relation between requirements supports tracing between an original and derived
requirement. The Refine relation links the requirement and the constraint, or other element used to
specify the textual requirement in more detail. Finally, requirements can be grouped and structured
using the RequirementContainer construct. Safety mechanisms should be inherited from the
technical safety requirements defining the fault detection or their control within the system (see
Figure 7). This includes the ability to detect random hardware faults and if appropriated, systematic
faults as well. At the same time, the measures for the detection or control of failure modes in the
communication channels need to be taken in account. In fact, all the necessary measures need to
put in place so that a safe state can be achieved.

 4-7 System design

In this sub-phase, at first step, system design and the technical safety concept shall comply with
the functional requirements and the technical safety requirements specification of the item. As a
final step, safety analyses shall be executed as central topic of the product development to identify
safety relevant failures caused by any element of the item under development that are able to
cause harm to people.

Thus, the first target of this sub-phase will be addressed with Papyrus tool. With this tool it is
possible to follow the standard recommendations about the use of hierarchical design and
avoidance of unnecessary complexity to achieve an adequate level of granularity. Such as it is
shown in the following pictures, at design level, functions from the higher level are refined into
sub-functions which can be either composite (can aggregate other functions) or atomic (non-
concurrent entities). In addition abstract hardware platform is provided at this stage, together with

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

49

an allocation of functions. Figure 13 shows the concrete functional architecture of a critical system
in Papyrus.

Figure 13: Concrete functional architecture of a critical system in Papyrus tool

Allocation is performed at design level, where the item is realized with concrete functional
elements. At this level, function prototypes of the Functional Design Architecture (FDA) are
allocated to nodes in the Hardware Design Architecture (HDA) as shown in Figure 14. Moreover,
every technical safety requirement should be allocated to hardware and/or software. Hence, these
activities can be performed only at DesignLevel, when the item is realised with concrete functional
elements (Papyrus and Qompass). As a result of the system design analysis, probably new
requirements are identified.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

50

Figure 14: Function-to-node allocation in a critical system in Papyrus tool

Once the Hardware Technical Safety Concept built by hardware components has been captured,
their initial failure rate data is defined. In fact, the technical safety requirements and safety
measures are allocated into the different hardware elements. At this point, the Hardware
Architectural Metric target values i.e. SPFM and LFM are defined at item level. These values are
ASIL dependant and they will be verified at HW component level later on. In addition, the estimated
value for Diagnostic Coverage (Latent and Residual) needs to be set at HW component level.

Here another key challenge is that internal and external interfaces of each safety-related
architectural element have to be defined to avoid safety-related effects on other elements. On the
one hand, the implementation of the architectural elements could meet the criteria for coexistence
(see part 9 chapter 6 of the automotive standard). On the other hand, Hardware Software Interface
Specification (HSI) should describe all safety-relevant dependencies between hardware and
software. This HSI will be refined during the hardware and the software development phases. Such
models need to be abstract enough to ensure later tests efficiency; however, they also should be
accurate to avoid false positives.

Once all these models are available, EAST-ADL2 makes possible to perform safety simulations
and analyses through external analysis tools. It must be taken into account that in an architecture
specification, an error is allowed to propagate via design specific architectural relationships when
such relationships also imply behavioural or operational dependencies (e.g. between software and
hardware). Consequently, EAST-ADL2 models can be optimized in terms of cost, safety and
performance with the framework Papyrus while all the necessary information (timing, redundancy

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

51

strategy, hardware platform) can be modelled with the input models of Qompass tool. Later on, the
results of the optimization can be fed back to these models as shown in Figure 15. The blue, red
and yellow bars in the chart correspond to results for different allocation strategies (a manual
allocation and two automatic allocations).

Figure 15: Results from the analysis/optimization in Papyrus (Qompass) tool

The second target of this sub-phase is to provide evidence for compliance of technical safety
requirements and functional safety requirements. In this way, to verify the system design, several
complementary methods shall be applied such as: inspection and walk-through, simulation and
safety analyses.

Inspection and walk-through may be conducted depending on critical nature of components.
Formal Inspection is a technical examination process during which a product is examined with the
purpose of finding and removing defects. A defect is any occurrence in a software product (design,
pseudo-code, code, comments, etc.) that is determined to be incomplete or incorrect with respect
to software requirements and/or program standards. Walk-through is a form of software peer
review" in which a designer or programmer leads members of the development team and other
interested parties through a software product, and the participants ask questions and make
comments about possible errors, violation of development standards, and other problems” (IEEE
Std. 1028-2008). Subsequently, the possible actions to take as a result of verification activities will
be decided.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

52

For system design analysis based on simulation techniques the ERNEST tool will be used since, in
early design stages, this simulation framework enables the analysis of non-functional properties as
well as adaptive behaviour at a system-wide level (simulation of computation and communication
within networked embedded systems are covered). The tool is interfaced to the Papyrus modelling
tool obtaining the software model and the rough hardware design (ECU and buses). In addition,
this interface enables to link the simulation results with modelled system requirements via back-
propagation.

As input information a deployment plan is also used for allocating the software functions to ECUs.
The ERNEST tool needs this information to collect groups of software functions to be scheduled.
Finally, network descriptions and timing constraints for end-to-end timing chains are supported.
These timing chains describe a path through the system, starting in a sensor, going through
several functions realized by software components on ECUs and ending in actuators. For each
function the worst case execution time and for each connection the worst case transmission delay
of a message is considered.

Obviously, the system developer has to provide the constraints for validation. Figure 16 depicts the
definition of a timing constraint between two ports in ERNEST.

Figure 16: Definition of a timing constraint in the ERNEST tool

Finally, the ERNEST output is the validation of every constraint based on the generated timing
traces during the simulation. The results are stored internally in the ERNEST model as so called
“constraint validations” along with an indication when a violation occurred. In Figure 17 the
visualization of the analysis results is shown where all events (stimulus and response) for a

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

53

constraint are visible. The time frame starts with a stimulus and it is only valid if a response occurs
within the previously specified timing interval.

Figure 17: Visualization of analysis results in the ERNEST tool

In case constraints are violated under certain conditions, changes on the hardware or software
architecture should be accomplished to fulfil all requirements. Finally, the simulation results can be
back propagated into the model in the Papyrus tool, to mark the respective connections and
functions regarding the failed timing constraints.

For the safety analysis, error models capture the system internal faults, failures, error logic and
propagations. Currently, a State-Machine (SM) based definition of error behaviour is supported
through the EAST-ADL temporal behaviour constraint specification. Given an error model, the
analysis of the causes and consequences of failure behaviour can be automated through tools. In
SafeAdapt project, composeR allows static safety analysis in terms of FTA whereas
FMEDAexpress addresses both qualitative and quantitative FMEA. The analysis leverage includes
fault trees from functional failures to software and hardware failures, minimal cut sets, FMEA tables
for component errors and their effects on the behaviour and reliability of the entire system. So, it is
possible to evaluate the system architecture versus alternative architectures through fast checks
which detect whether certain unsafe systems states are reachable and what the corresponding
probability is.

For a safety critical development both systematic and random hardware failures need to be
managed. Systematic failures can be eliminated changing the design, modifying the manufacturing
process or the operational procedure, documenting and using the documentation properly, etc. In
other words, ensuring fault avoidance and fault removal of the design. In fact, they must be
avoided and controlled. In contrast, random hardware failures occur unpredictably during the
lifetime of a hardware element. This second type of failure follows a probability distribution and it is
needed to control and mitigate their effects.

As depicted in ISO 26262-4:2011 clause 7, the different measures for the avoidance of systematic
failures are stated in Table 2 (o = the method has no recommendation for or against its usage for
the identified ASIL, + = recommended, ++ = highly recommended).

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

54

Deductive analyses (FTA, RBD, Ishikawa diagram) are highly recommended for ASIL C and D
whereas inductive analyses (FMEA, ETA, Markov modelling) are highly recommended for all ASIL
levels. As a result of this step, the causes of systematic failures and the effects of systematic faults
are identified.

Methods ASIL
A B C D

Deductive Analysis O + ++ ++
Inductive Analysis ++ ++ ++ ++

Table 2. Methods for safety analysis on the system design (II)

As the main purpose of conducting such a safety analysis is the assistance in the design,
qualitative methods can be sufficient. In any case, if necessary quantitative ones can be carried out
as well.

Consequently, and thanks to this analysis, external and internal causes of systematic failures are
identified and the corresponding next measures are taken to either eliminate or reduce their effect.

FMEDAexpress (Qualitative FMEA)

As previously mentioned, qualitative methods at system level are highly recommended by ISO
26262. Moreover, during this process not previously identified top level system malfunctions during
HARA could arise.

At this point, components are black boxes having their own functions described. As first step, the
effect of each component failure mode without safety mechanism is analysed. These effects are
the top level system malfunctions already identified in HARA. The previous step allows assessing
the most critical failure modes or malfunctions of the system components.

Afterwards, fault tolerance is achieved by means of defining internal or external safety mechanisms
in order to control or mitigate these failure modes. In other words, the most critical malfunctions of
the components are not propagated to others.

Once the safety mechanisms are defined, they are taken into consideration to redefine the new
effects. Hence if any extra safety mechanism was still needed, this lack would be found out.

composeR (Qualitative FTA)

In contrast to FMEA, Fault Tree Analysis is highly recommended for ASIL C and D, being just
recommended for ASIL B.

It is a complementary safety analysis to FMEA. It consists of performing Boolean logic diagrams to
analyse causes and their combination into a top event or top level system malfunction violating the
safety goal. To prevent the failure of the system to happen, safety mechanisms are introduced
mitigating the component failure.

The repetition of an event in several branches leads to a common cause failure.

Figure 18 presents the example of a system FTA with composeR.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

55

Figure 18: Example of a system FTA with composeR: (a) Classic Fault Tree and (b) Component
Fault Tree. For more information, please see (Jessica Jung, 2013).

composeR (Quantitative system FTA)

This method whereby the residual risk from each safety goal is allocated into components is an
extension of qualitative FTA.

After assigning the residual risk target for each safety goal which is the same that the top event
needs to achieve, each event in the fault tree needs to be completed with a value starting from the
top until the bottom. Figure 19 presents an example of a FTA with failure probabilities with
composeR.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

56

(a)

(b)

Figure 19: Example of a FTA with Failure probabilities with composeR: (a) At component level,
failure modes propagate from one component to another and (b). Within a component fault tree,
the failure behavior of a component is modeled.

In fact, in agreement with ISO 26262-5:2011, fault tree analysis is available for this purpose. To
demonstrate the coverage of first failures, FMEA is recommended. During the application of
FMEDA, a quantified version of FMEA, random hardware faults can be included which use

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

57

architectural metrics allocated to components to calculate the effects of random hardware faults
using Single-point fault metric (SPFM) or Latent-fault metric (LFM).

The target value for SPFM and LFM for the element of the item architecture at system level shall
be specified in the System Design.

 4-8 Item integration and testing

The integration and testing phase comprises three phases and two primary goals as described
below: the first phase is the integration of the hardware and software of each element that the item
comprises. The second phase is the integration of the elements that comprise an item to form a
complete system. The third phase is the integration of the item with other systems within a vehicle
and with the vehicle itself.

The first objective of the integration process is to test compliance with each safety requirement in
accordance with its specification and ASIL classification. The second objective is to verify that the
“System design” covering the safety requirements is correctly implemented by the entire item.

According to Spanfelner et al. (Spanfelner, B.; Richter, D.; Ebel, S.; Wilhelm, U.; Branz, W.; Patz,
C. , Mai 2012), Figure 20 shows the trace of the different safety requirements. It contains also the
design and test flow especially for software development. This trace is also pictured in ISO 26262-
10:2011 and here supplemented with additional information about the responsibility of the different
levels of safety requirements. As shown in this figure, this sub-phase is carried out by several
companies at different levels.

Figure 20: Safety requirements, design and test flow from concept to software

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

58

 4-9 Safety validation

The first aim of this sub-phase is to provide evidence of compliance with the safety goals and that
the functional safety concepts are appropriate for the functional safety of the item. The second aim
is to provide evidence that the safety goals are correct, complete and fully achieved at vehicle
level.

In other words, the safety validation criteria shall be specified based on the functional safety
requirements and refined based on the technical safety requirements. During safety validation
evidence shall be provided that the planned external measures are implemented as specified in the
safety requirement documentation and that the technical solution satisfies the allocated safety
goals.

The Papyrus extension Sophia tool offers detailed means to model artefacts of verification and
validation activities (using Verification and Validation extension) and to relate these artefacts to
requirements. This facilitates planning and tracking V&V activities and their impact on the system
parallel to the system’s development.

Moreover, ISO 26262 establishes that the safety validation is performed through the assurance
(based on examination and tests) that the safety goals are sufficient and have been achieved. To
carry out this, the following methods allowed by the standard shall be applied:

 Analyses through composeR, FMEDAexpress, UNISIM-VP and Dynacar RT (simulation
based)

 Reviews

 4-10 Functional safety assessment

The safety case is considered as an input of the Functional Safety Assessment, but the “Functional
Safety Assessment Report” is an input for the Safety Case. It shows that activities should be
performed in parallel. After a successful run of a functional safety assessment, ISO 26262 defines
the “Release for Series Production” in its chapter/clause 11.

Due to permanent need of human interactions for analysis, verifications, design decisions,
validations etc. in this project the “Functional Safety Assessment” could be only partially
considered. Some of the described methods for verification give already the hint that for complete
functional assessment a complete tailored safety lifecycle has to be considered, including human
influences.

 4-11 Release for production

This part of the ISO 26262 standard is out of scope of SafeAdapt project.

5.3 Product development: hardware level

The current SafeAdapt project does not fully cover this part of ISO 26262. Only main chapters
addressed by the project have been included.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

59

The tool chain is intended for development of systems with more focus on software than hardware
development. Hardware is mainly seen as purchased part and only included for safety analysis and
configuration aspects.

 5-8 Evaluation of the hardware architectural metrics

FMEDAexpress enables the calculation of hardware quantitative measures required by ISO 26262
for hardware architectural metrics and the safety goal evaluation due to random hardware failures.
In other words, these metrics capture the single contribution of each violating failure mode as a
specific failure rate, according to its characterization. In short, these metrics have to be verified
from the detailed design architecture using electronics parts reliability data consisting of two types
of base FIT rates: persistent FIT rates (related to permanent faults) and SER (Soft Error Rate)
information (related to transient faults or soft errors).

The tool calculates FIT rates such as RF, SPF, MPF_l and Diagnostic Coverage with respect to
latent and residual faults which are computed to get the final SPFM and LFM metrics. The resulting
values should be verified against the expected ones determined by the corresponding ASIL level.

Table 3 depicts the possible source for the derivation of the target ISO 26262 Single-point fault
metric and Latent-Fault Metric value.

 ASIL A ASIL C ASIL D ASIL D

Single-point
fault metric

n.a. ≥90 % ≥97 % ≥99 %

Latent-fault
metric

n.a. ≥60 % ≥80 % ≥90 %

Table 3. “Single-point fault metric” and “latent-fault metric” values

 5-9 Evaluation of the safety goals violations due to random hardware failures

ISO 26262 Part 5 Chapter 9 proposes two alternative methods to evaluate whether the residual
risk of a safety goal violation because of random hardware failures of the item is comparable to
residual risk of other items already in use. This process evaluates that the residual risk of violating
a safety goal due to single-point faults, residual faults and dual-point faults is low enough. In
SafeAdapt both methods are applied.

The method 1 is based on a quantified FTA to calculate the so called “Probabilistic Metric for
random Hardware Failures” (PMHF). There are clearly gaps in FTA tools of the market to calculate
accurately this PMHF value thanks to formal representation and impact and of diagnosis coverage
of safety mechanism (Cuenot, P.; Adler, N.; Otten, S., 2013).

PMHF = single point faults failure rate + residual faults failure rate + (total safety related faults
failure rate / 10-9 * delta) * latent multiple point faults failure rate

Whereas PMHF presents a global approach, the failure rate class method (FRC) evaluates each
hardware component individually. It especially addresses the individual evaluation of each residual
and single-point fault and of each dual-point failure leading to the violation of the considered safety

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

60

goal. This method is based on Failure Rate Class and it is performed during quantified FMEDA.
Most market available tools can calculate architectural metrics and residual risk based on method
2, but systematic reuse is missing.

5.4 Product development: software level

ISO 26262-6:2011 specifies the requirements for Product Development at Software Level for
automotive applications, including the following:

 • requirements for initiation of product development at software level,

 • specification of the software safety requirements,

 • software architectural design,

 • software unit design and implementation,

 • software unit testing,

 • software integration and testing, and

 • verification of software safety requirements.

As shown in next figure, the Product Development at Software Level phase is digitalised with the
Prossurance tool using its prescriptive knowledge management functionality. This functionality
manages standards information as well as any other information derived from them, such as
interpretations about intents, mapping between standards, etc. The process and activities which
are required to be carried out in order to address this phase are defined with Prossurance tool. In
addition, required and produced assets and assurance artefacts are identified. In latter case this
identification is shown through green relationships while red dotted relationships are used in case
of required work products.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V adaptive system behavior

61

Figure 21: ISO 26262 Product development at software level in Prossurance tool

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behavior

62

In the following chapters detailed guidelines are presented in order to address Product
Development at the Software Level phase in accordance with the standard.

 6-5 Initiation of product development at software level

To perform a dependent failure analysis at module level, software safety requirements resulting
from this part need at least be available.

 6-6 Specification of the software safety requirements

Software safety requirements can be modelled in EAST-ADL using Papyrus as shown in Figure 7.
Such specification of the software safety requirements also considers constraints of the hardware
and the impact of these constraints on the software.

 6-7 Software architectural design

As stated in ISO 26262, the aim of the software architecture phase is to:

 Design a software architecture that realizes the software safety requirements.

 Verify the software architectural design

The aim of the software architectural specification is to represent all software components and their
interactions in a hierarchical structure. Static aspects as well as dynamic aspects are described.
Moreover, every software component used in the software architectural design shall be
categorized as:

 newly developed

 reused with modifications

 reused without modifications. In this category, safety-related software components shall be
qualified

In this subphase the software safety requirements shall be allocated to sub-systems or software
components, so that each inherits the highest ASIL of any requirement allocated to it.

As shown in Figure 22, SafeAdapt methodology is aligned to EAST-ADL2 in which the
implementation level is based on AUTOSAR standard. Thus, system models at implementation
level specify the actual software and hardware architectures according to AUTOSAR. At the
highest level of the AUTOSAR model, the definition of software architecture (set of software
components and their relations) and their internal behaviour are represented by the set of runnable
entities. Runnable entities are non-concurrent entities that are the allocation units of the Operating
System (OS) tasks.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

63

Figure 22: EAST-ADL and AUTOSAR scopes

Transformation from the design (EAST-ADL2) to the implementation (AUTOSAR) level is a crucial
step. In this project, the AUTOSAR gateway tool provides an enhanced transformation from EAST-
ADL2 design architecture to AUTOSAR vehicle architecture design and initial system configuration.
The preliminary AUTOSAR model is generated following some predefined strategies. For instance,
atomic functions from design level are transformed into runnable entities. Also hardware platform
according to the AUTOSAR concept is generated from the EAST-ADL2 hardware platform
specification. In addition, runnables are grouped into software components, which are allocated to
the Electronic Control Units (ECUs) based on runnables allocation. Generation of software
components corresponds to the compositional structure of functions. However, a final user can
specify his constraints according to which runnable will be grouped in software components.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

64

Figure 23: AUTOSAR model in AR gateway tool

The upper part of Figure 23 shows the design architecture of the SafeAdapt model along with the
allocation of application components to ECUs. The lower part shows a subset of the resulting
AUTOSAR model in form of a UML model applying the AUTOSAR profile. The option to generate
UML has the advantage that it enables a refinement of the AUTOSAR model in the same
environment as the original EAST-ADL model. In a second step, it is also possible to generate
ARXML which allows exchanging AUTOSAR models between tools through arxml (AUTOSAR
XML) files as shown in Figure 24

Figure 24: Generation of arxml files from AUTOSAR model in AR gateway tool

This enables further refinement with tools supporting the import of this format, e.g. Arctic Studio.
Using Arctic Studio, together with information about allocation of functions to the nodes, designers
can improve the configuration at implementation level. Then it can further be refined and evolved
by applying design space exploration that will partition runnable entities in tasks and schedule

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

65

them in a way that will optimize system end-to- end responses. In brief, Arctic Studio tool allows
designers to define:

 Hardware entities and topology with enough detail to support software configuration

 Software components with runnables

 Mapping to tasks and frames

 Mapping to ECUs and busses

Figure 25 shows a software architecture in Artic Studio.

Figure 25: Software architecture in Arctic Studio tool

In addition, it is possible to define mappings at different abstract levels such as between
elementary or composite functions and appropriate AR software components or runnable. Through
this realization relationship, software architecture can be traced back to functions, features and
requirements.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

66

Figure 26: RTE configuration in Arctic Studio tool

From above we can deduce that Arctic Studio tool is used to represent the final software
architecture of automotive embedded systems. As such, it includes the definition of the software
components, their interfaces, execution timing, middleware (basic software) interactions, and so
on. The model is sufficiently detailed to automatically generate and configure the platform software
and integrate it on ECUs.

Additionally, developers can take advantage of the support provided by Arctic Studio in relation to
safety mechanisms such as:

 Built-in self-test mechanisms for detecting hardware faults (testing and monitoring) in
relation to Memory and Core

 Run-time mechanisms for detecting software faults during the execution of software (Watch
Dog)

 Run-time mechanisms for preventing fault interference (memory partitioning for SW-Cs and
time partitioning for applications). In this case and according to ISO 26262, part 6, clause
7.4.11, the partitioning scheme and the partitioning framework of the operating system shall
be specified to ensure freedom from interference.

 Run-time mechanisms for protecting the End-to-End (E2E) communication protection for
SW-Cs

 Run-time mechanisms for error handling (on the basic software and hardware)

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

67

For all implemented safety mechanisms a safety manual is needed containing the fault model
according to which the safety mechanism was developed and the constraints that must be fulfilled
when applying the safety mechanism.

The safety analysis method described below has to be performed during the software architecture
phase in order to:

 identify or confirm the safety-related parts of the software; and

 support the specification and verify the efficiency of the safety mechanisms

The analysis has to be performed according to the description in ISO 26262 part 9, clause 8. Fault
Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA) are methods that can be used
to verify the software architecture and SW safety concept. This type of analysis is done on
software module level once the software architecture is released.

Hence, composeR (FMEA) and FMEDAexpress are used to either identify or confirm the safety-
related parts and it supports the specification and verification of the safety mechanisms to mitigate
both random hardware failures and software faults e.g. diverse software design. Such safety
analyses should be performed separately for each SW module that has at least one ASIL
requirement (i.e. not QM).

Software failures, as systematic failures, do not require quantitative analyses but only qualitative
analyses.

To be sure about the independence between software components an analysis of dependent
failures should be carried out as well. The aim of this analysis is to identify single cause that can
invalidate a required freedom from interference between two software elements and lead to the
violation of a safety requirement or safety goal. This type of analysis is done on software elements
that could be affected by common cause failure or cascading failure.

The identification of dependent failures (systematic/random) can be supported by FMEA. Similar
parts with similar failures modes that appear several times in FMEDAexpress can give more
information about these types of failures. ComposeR (FTA) can help in this identification as well.
Examination of cut sets or repeated identical events of a FTA can indicate potential for dependant
failures. The analysis has to be performed according to the description in ISO 26262 part 9, clause
7.

Finally, if as a result of such analyses new hazards are identified, they shall be introduced and
analysed in the hazard analysis and risk assessment.

 6-8 Software unit design and implementation

At this phase, the goal is to specify the software units in accordance with the software architectural
design and the associated software safety requirements, to implement the software units as
specified and to verify the design of the software units and their implementation.

Here, the first activity is to define and establish the specific rules for design and programming to be
followed in the current project. Once these rules are clear, the team proceeds to use Arctic Studio
tool. With this tool it is possible to follow the standard 26262 recommendations about the use of
hierarchical design and avoidance of unnecessary complexity to achieve an adequate level of

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

68

granularity. Arctic Studio includes the definition of the software components, their interfaces,
execution timing, middleware (basic software) interactions, etc. The model is sufficiently detailed to
automatically generate and configure the platform software and integrate it on ECUs as it is
illustrated in Figure 27. The last step, called Build, compiles all the generated files and runnables
and builds the executable (.elf) file which is loaded in ECU for debugging and testing. Debugging
helps to check the application whether it is working correctly as anticipated. If modification or
correction is required then development process can be resumed again from the previous step.

Figure 27: Arctic Studio tool workflow

In parallel, an ASIL (ASIL-A to ASIL-D) must be allocated to each function. Typically all SW
functions inherit the same ASIL as the SW module in a top-down approach. Moreover, every SW
function is assigned a criticality class (C0 to C3, where C0 is not safety related):

 C1: Interference free. No interference with safety related functionality

 C2: Safety relevant. Latent fault

 C3: Safety critical. Single-point fault

The combination of ASIL target and criticality defines for each SW function what kind of safety
measures should be considered for implementation for that SW function with reference to ISO
26262-6:2011: Table 4 or similar. For example, if an ASIL D software module contains a function
that is not safety related (i.e. does not have any safety requirement), then this function shall only
implement measures to ensure independence and freedom from interference.

On the other hand, the TTEthernet tools enable the developer / design engineer to conduct
seamless design, create configuration and provide data loading for TTEthernet based networks
(see Figure 28). The tools capture system-level communication requirements and automatically
generate network- and device configuration- files, thus enabling seamless integration with existing
design processes.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

69

Figure 28: TTEthernet data flow for configuring a network

By using TTEPlan, TTEbuild and TTELoad, the tools generate all files and data bases needed for
the TTEthernet data communication based network, including a tool for loading appropriate files
(TTELoad) to the hardware of the target network. Within the following, the work flow to configure a
TTEthernet based network is described (see Figure 29).

The development/design process is started by using TTEPlan. The designer will reply to a set of
interactively lead input masks entering requirements and parameters. By this computer aided
process the high level communication requirements for the network will be described and defined.
This includes parameters for the physical and the logical topology of the network under
consideration. Furthermore, the virtual links, including their IDs, timing requirements and possible
frame sizes will be defined. Finally, synchronization parameters and requirements are defined (i.e.
the SAE AS6802 clock). All information is stores in XML file format for further processing. The
network schedule is available as soon as all steps are completed and the data is automatically
processed by TTEPlan.

In a next step, the resulting XML file from the TTEPlan tool is used as an input file to TTEBuild
Network Configuration tool supporting the network configuration process. Everything is
implemented in a set of XML files. The network schedule calculated by TTEPlan is included in this
set of XML files. The network configuration is independent from the target hardware. It simply
describes all details necessary to configure the network accordingly. This comprises the
schedule(s), the port assignments, the buffer allocation for all devices planned in the network
(number of devices and types need to be known). Potentially it might be useful to modify or even
create parts of the network configuration by third party tools, which is possible and it is supported
by the TTEthernet tools.

The next step is to introduce the resulting XML file set into the TTEBuild Device Configuration
Database tool. This tool generates one device configuration file per device planned in the target
network (i.e. switch or end system). The TTEBuild Device Configuration Database tool provides its
results both, in XML format and in binary code (different image formats, HEX or BIN can be
selected) ready for direct download to the target device. The device configuration is

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

70

device/hardware specific and describes all configuration parameters at bit level. Fine-tuning of
device parameters is possible at this level.

In a next step, the binary code is downloaded to the switches in the network using the TTELoad
tool. TTELoad connects to the management interface of the switch and provides a safe unlocking
procedure before reprogramming the static configuration memory of the switch. It also supports
bootstrap configurations of the TTEthernet switches. For the End-systems the information is loaded
to them using the drivers included in the End-system delivery package.

TTTech provides Eclipse plug-ins for TTEPlan and TTEBuild. With editors for all TTETool
databases, as well as a schedule visualization feature, Eclipse then provides a convenient user
interface for most TTETool use cases. Basic database validation and generation of validation
reports is also possible using Eclipse.

Figure 29: TTEthernet tools development suite

At the last activity of “Software unit design and implementation” phase, the detailed design and its
implementation are statically verified before proceeding to the software unit testing phase. To do
this, inspection and walk-through may be conducted depending on critical nature of components.
Formal inspection is a technical examination process during which a product is examined with the
purpose of finding and removing defects. A defect is any occurrence in a software product (design,
pseudo-code, code, comments, etc.) that is determined to be incomplete or incorrect with respect
to software requirements and/or program standards. While walk-throughs is a form of software
peer review "in which a designer or programmer leads members of the development team and
other interested parties through a software product, and the participants ask questions and make
comments about possible errors, violation of development standards, and other problems".
Subsequently, the possible actions to take as a result of verification activities will be decided.

 6-9 Software unit testing

Software unit tests should be executed to verify that the software units fulfil the software unit
design specifications and do not contain undesired functionality. To demonstrate that there is no

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

71

unintended functionality structural coverage metrics should be measured for safety relevant
software units.

In SafeAdapt, unit test cases are generated manually. However, according to the 26262 standard,
Dynacar RT tool can be used as a test environment in order to execute both software-in-the-loop
and hardware-in-the-loop tests. Instead of deploying separate environments to test different
components of a vehicle and rebuilding and redeploying models, Dynacar RT delivers a common
test platform that can be used through the whole powertrain design process, allowing rapid
prototyping, implementation and real-time testing of ECUs and powertrain components since
Dynacar RT supports an open architecture.

Prior running the tests, the user should set up the test environment. This process includes three
main steps: the configuration and implementation of the vehicle model, the definition of the test
tracks and the configuration of the driving cases.

a) Configuration and implementation of the vehicle model

At the first step, in order to determine the vehicle dynamics behaviour in a driving situation the
vehicle model should be adjusted to the vehicle real parameters. By default, there are 10 vehicle
configurations in Dynacar RT which can run the tests, but the parameters of any vehicle can be
changed.

In Figure 30, the user selects and updates the car skin.

Figure 30: Real vehicle 3D visualization in Dynacar RT

Once the base model of the vehicle is loaded, the detailed vehicle setup can be completed through
the definition of domain parameters such as: body (mass, GOG, wheelbase, track, etc.),
aerodynamics, wheels, suspension & steering, powertrain and brake system.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

72

Figure 31: Vehicle parameters definition in Dynacar RT

To complete the vehicle model, the custom control algorithms and simulation models generated
with other languages (Labview, Simulink, Dymola, Maplesim, C/C++, etc.) can be integrated
directly into the base Dynacar RT vehicle model in dll format. In this way, engineers can customize
the model by changing parameters on the fly using the graphical user interface or by plugging in
their own models. This feature allows carrying out software-in-the-loop tests as shown in Figure 32.

Figure 32: External model integration and virtual ECU (SIL) in Dynacar RT

On the other hand, it is possible to implement a hardware-in-the-loop testing environment by
installing custom I/O hardware and its application.

b) Definition of the test tracks

At the second step, the test tracks can be accurately modelled using accurate terrain information
and on site measurements. By default, 5 circuits are included such as, for instance, the test track
at INTA facilities (Madrid, Spain) shown in Figure 33. However, with the Scenario Editor, users can

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

73

design and modify scenarios in several ways: importing csv file with X-Y-Z road data, importing gpx
file with GPS data, importing Google maps route and adding fixed objects to the scenario. In
addition, the vehicle start position within the circuit should be established.

,.

Figure 33: Accurate test track model in Dynacar RT

c) Configuration of the driving cases

At the third step, the driving tests should be configured. Dynacar RT allows to introduce different
data from excel files. In order to help user generating this data Dynacar RT provides several
predefined excel templates grouped in the following concepts: autonomous cycle (speed vs time,
height vs distance, height vs time).

Figure 34: Example of test case input template in Dynacar RT

In addition, other model inputs/outputs can be linked in case of being provided by another
model/controller installed on the same HW or can be linked using any kind of communication

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

74

(CAN, FLEXRAY, PROFIBUS, A/D, Ethernet and so on). For instance, several outputs can be
used as virtual sensors that can be connected to other software or models (SIL) or hardware (HIL).

Once configuration is performed Dynacar RT is ready as a test environment. The simulation should
be run in Dynacar RT in order to generate plausible vehicle behaviour data. At the first step, the
user should choose the test type: with human driver or driverless just following driving cycles in
autonomous mode. After that, by selecting the download project option, the simulation will start
with the new parameters and the selected scenario. After the simulation a manual analysis of the
readouts should be achieved by the user. These results can help developers to verify that the
software fulfil the design specifications and do not contain undesired functionality.

 6-10 Software integration and testing

The scope is to integrate the software components and demonstrate that the software architecture
is correctly realized. Integration levels are tested against the architectural design.

To verify the software units, it is advisable to use an appropriate combination of the following
verification mechanisms:

 Mechanisms for error detection at software architectural level

 Mechanisms for error handling at software architectural level

 Methods for the verification of the software architectural design

In SafeAdapt, test cases are generated manually. However, according to the 26262 standard,
Dynacar RT tool can be used as a test environment in order to execute both software-in-the-loop
and hardware-in-the-loop tests. Depending on the scope of the tests and the hierarchical level of
integration, Dynacar RT can be used in combination with the target processor for final integration,
or a processor emulator or a development system for the previous integration steps. For a detailed
explanation about the use of Dynacar RT, please, consult chapter “6-9 Software unit testing”.

 6-11 Verification of software safety requirements

The goal is to demonstrate that the embedded software fulfils the software safety requirements.

According to the 26262 standard, this verification can be conducted with the support of Dynacar
RT tool since it works as a "Virtual Rolling Chassis" concept (or test mule virtual car). This testing
shall be executed on the target hardware. For a detailed explanation about the use of Dynacar RT,
please, consult chapter “6-9 Software unit testing”.

Moreover, composeR can be used as a verification method to confirm that all possible failure
modes are covered by appropriate safety measures (as specified in the software technical safety
concept). Hence composeR and FMEDAexpress (FMEA) are used to either identify or confirm the
safety-related parts and it supports the specification and verification of the safety mechanisms to
mitigate both random hardware and software faults e.g. diverse software design.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

75

5.5 ASIL-oriented and safety-oriented analyses

The current SafeAdapt project does not fully cover this part of the ISO 26262 standard. Only main
chapters addressed by the project have been included.

 9-7 Analysis of dependent failures

Dependent failures are defined by ISO 26262 as failures whose probability of simultaneous or
successive occurrence cannot be expressed as the simple product of the unconditional
probabilities of each of them. Such dependent failures should be identified from the results of
safety analyses and they can be classified as Common Cause Failure or Cascading Failure.

As shown in the following figure, a Common Cause Initiator (CCI) exists and triggers the same or
different systematic software faults (2 and 2’) in both SW elements, causing both to fail. The
combination of the resulting failures leads to the violation of the safety goals.

Figure 35: Common Cause Failure

In the following figure a cascading failure is shown. In this example, a fault (1) on SW element 1
leads to its failure. Due to insufficient fault containment on SW element 1 or insufficient
independence of SW element 2 a coupling mechanism (2) exists, which leads to a failure of SW
element 2. The combination of the two resulting (cascading) failures or the resulting (cascading)
failure 2 leads to a violation of the safety goal (3).

Figure 36: Cascading Failure

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

76

In SafeAdapt, the identification of dependent failures (systematic/random) can be supported by
FMEA. Similar parts or components with similar failures modes that appear several times on
composeR (FMEA) can give information about these types of failures. composeR (FTA) can help in
this identification as well. Examination of cut sets or repeated identical events of a FTA can
indicate potential for dependent failures.

Any dependability related to robust design could not be evaluated by analysis of the architecture.
The realized product, a simulation of the realized design or a model which is completely validated
versus the design is compulsory.

Typically the software elements that can be affected by common cause initiator are:

 The redundant or diverse elements (e.g. resulting from an ASIL decomposition)

 The software module and its safety mechanisms (e.g. software functional part and the
watchdog)

 The software functions using identical SW modules (e.g. libraries)

 The software that rely on the same hardware or same input signal

ISO 26262 gives a list of possible root causes for hardware and software dependent failures. The
list can be reduced to the ones related to software:

 Random hardware failures (e.g. CPU and memory structures)

 Development faults (e.g. during software development process)

 Installation faults (e.g. during configuration, integration)

 Environmental factors (e.g. impact on input values, interrupts)

 Failures of common internal and external resources (e.g. libraries)

Based on the list, the possible CCI and software faults must be retrieved.

In order to make a more systematic analysis about the possible CCI or software faults, the type of
software properties that can be affected by the root causes is proposed:

 Data

 Control flow

 Timing

 Code and configuration

 Shared HW resources

Based on the matrix of root causes and affected software properties, a better systematic analysis
of the possible CCI, software faults or the resulting failures can be done.

As being the search for basic events that trigger multiple top events of a fault tree analysis,
Common Cause Analysis is also possible in component fault tree analysis. The identification of
common causes is drastically increased since all basic events and all top events are included
within one single model. In contrast to that, common cause analysis can be complex in classic fault
trees since a common cause can be in multiple separated trees.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

77

 9-8 Safety analyses

Safety Analyses examine the consequences of faults and failures on items considering their
functions, behaviour and design. It also provides information on conditions and causes that could
bring violations to a safety goal or requirement. Last, it could indicate new hazards not found
during the hazard analysis and risk assessment.

These are two most common techniques for analysing system fault modes: FMEA and FTA. The
FMEA is an inductive (bottom up) approach focusing on the individual parts of the system, how
they can fail and the impact of these failures on the system. FMEA starts from known causes and
forecasting unknown effects while FTA is a deductive (top down) approach starting with the
undesired system behaviour and determining the possible causes of this behaviour. FTA starts
from known effects and pursues unknown causes.

In other words, FMEA focuses on each system component and it examines before-the-fact all
things that could possible go wrong with that component. While FTA focuses on failure outcome
and it examines the applicable components, processes and conditions retroactively to identify all
possible contributing factors that could have worked alone or in combination to cause the outcome.
FMEA and FTA complement each other. FMEA yields the possible system failures, which are the
inputs of FTA (Rolf, 2006). In practise, a FTA is performed for lager systems. When a problem is
detected within a certain subsystem an FMEA on the smaller subsystem is performed to find out
how it behaves. Figure 37 shows how the FMEA and the FTA complement each other.

 (a) (b)

Figure 37: (a) FMEA and (b) FTA [3]

Such methods could be classified as “Qualitative” or “Quantitative”. Qualitative analysis methods
identify failures without predicting how often they occur. Qualitative FMEA at system, design or
process level together with qualitative FTA are some of these techniques. As ISO 26262-6:2011
depicts, this method could even be applied to software where no more appropriate software-
specific analysis methods exist.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

78

On the contrary, quantitative analysis methods predict the frequency of failures as well. The
quantitative analysis methods include quantitative FMEA and FTA. Software failures, as systematic
failures, do not require quantitative analyses but only qualitative analyses. These types of methods
mostly address random hardware failures. They are used to verify a hardware design against
defined targets for the evaluation of the hardware architectural metrics and the evaluation of safety
goal violations due to random hardware failures (see ISO 26262-5:2011). Quantitative safety
analyses require additional knowledge of the quantitative failure rates of the hardware elements.

Quantitative analysis, when dealing with HW random faults, is called FMEDA (Failure Mode Effect
and Diagnostic Analysis). FMEDA permits to calculate the architectural metrics (Single Point Fault
Metrics and Latent Fault Metrics) by introducing safety mechanisms with their diagnostic coverage
(detection rate of the fault) stopping or mitigating the fault propagation as proposed in ISO 26262
Part 5.

In SafeAdapt there are two safety analysis tools: composeR (which performs FTA) and
FMEDAexpress (which performs FMEDA analysis). Table 4 illustrates the tools capabilities
addressing ISO 26262.

 FME(D)A CFT

Availability to perform
qualitative and quantitative

analysis

FMEA: qualitative

FMEDA: quantitative

Both

Addresses random failures YES: FMEDA YES

Addresses systematic failures YES:FMEA Yes but low of interest

Application to different
architectural levels

YES YES

Used to calculate SPFM and
LFM

Yes FMEDA Not direct

Support dependent failure
analysis

YES YES

Analysis generated from
models

YES NO

Table 4. Tool capabilities addressing ISO 26262

Such safety analysis techniques are performed at the appropriate level of abstraction during the
concept and product development phases of ISO 26262. If the analysis determined that a safety
goal or requirements is not compliant with, such results should be used for deriving prevention or
mitigation measures for the causes of the violation.

Below the methodology to use these two safety analysis tools is given.

FMEA Analysis with composeR

Failure Modes and Effects Analysis (FMEA) (Sweeden, 2013) is a detailed bottom up inductive
analysis of a system, subsystem, process, design or function so that potential failure modes, their
causes and their effects can be identified. At the same time, it helps in the process of either
controlling or avoiding the undesired effects of these failure modes. It focuses on the individual
parts of the system, how they can fail and the impact of these failures on the system. Since this

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

79

bottom-up safety analysis method starts with a detailed list of all components within a system, their
failure modes are identified and the analysis of their impact at higher levels is performed. Their
effects at the highest system level are foreseen.

The composeR tool allows an XML-based import of the component structure with arbitrary
hierarchy. After the component structure is being imported, component fault tree analysis and
FMEDA analysis can be performed.

It usually consists of the following steps as shown in Figure 39.

Figure 38: General FMEA analysis process

At the final step, in composeR all relevant information is documented in a worksheet as shown in
Table 5.

Documentation

Tracing of the committed avoidance and recovering activities / Response plans and tracking

RPN calculation

Detection Rate

Determine the detection rating for each control mechanisms.

Preventive/Detection actions

Put mechanisms in place to control the failure to happen

Occurrence Rate

Rank how likely this effect could occur

Failure Causes

Identify all the possible root causes of the failure

Severity Rate

Rate how severe the effects is

Failure Modes/Effects
Identify all the ways failure could happen for

each function Identify all the effects of the failure

List the key process steps. Identification of functions (system/design/process level)

Review the design /process and identify the system components and its functions

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

80

Table 5. General FMEA table

Where

a) Function: identify the functions of the scope by means of identifying the purpose of the
system, design, process or service. The scope is usually divided into different
subsystems, items, parts or process steps.

b) Failure Mode: fill it with all the possible failure modes that may affect the considered
function. It answers the question about what could go wrong.

c) Failure Causes: define all the possible failure causes for each failure mode i.e. why
would the failure happen?

d) Failure Effects: determine all the consequences on the system, related systems,
process, and related processes for each failure mode i.e. what would be the
consequences of failure?

e) Severity Rate (S): 1–10, 10 = most severe effect

f) Preventive Actions/Detection Actions: for each cause, it identifies how to control them
by means of either procedures or mechanisms in place. Specifically, the actions prevent
the failure to happen, reduce the possible likelihood or detects the failure.

g) Occurrence Rate (O): 1–10, 10 = very likely to occur

h) Detection Rate (D): 1–10, 10 = very unlikely to detect

i) Risk Priority Number (RPN): SxOxD

j) Recommended Actions: design or process changes to make severity or occurrence
lower. For instance, actions to reduce the hazard rate increase the potential of finding
failures…

In addition, this data is usually completed with useful information such as: controls to improve
detection process, responsible person, deadlines, remarks, etc.

Component Fault Tree Analysis with composeR

FTA (Headquarters) is a top down, deductive failure analysis technique to evaluate the safety and
reliability of a given system based on its architecture. It backwardly deduces the causes of a given
event, discovering the root causes of failures.

The composeR tool allows an XML-based import of the component structure with arbitrary
hierarchy. After the component structure is being imported, component fault tree analysis and
FMEDA analysis can be performed.

During the whole development phase of safety-critical embedded systems the automation
capabilities and the integration of dependability analyses into the design process can save great

Item/Function Failure
Mode

Failure
Causes

Failure
Effects

Severity
Rate(S)

Occurrence
Rate(O)

Detection
Rate (D)

Preventive
Actions/
Detection
Actions

RPN Recommended
Actions

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

81

effort and therefore also money. This is the reason why it is becoming a significant concern within
the design community.

Model safety analysis allows an early safety assessment in the system design process. Methods
such as Fault Tree Analysis or FMEA tables can be automatically generated, rather than creating
them manually as it has been performed so far (A. Joshi, 2005) . Model-driven safety analyses are
applied in the architecture design phase and this automation is based on an architecture design
specification together with the specification of the failure behaviour of architectural components.
Hence, both system level faults and design architecture itself need to be modelled together,
extending the model with faults and failure modes. These faults can be classified as
transient/permanent, non-deterministic/inverted/stuck-at, based on its fault propagations or
dependency of faults, fault hierarchies i.e. failure mode of a component as a function of its
subcomponent, digital faults (HW/SW), etc. The modelling of error propagation, error masking and
filtering is carried out in such a way that the inheritance of these rules from hierarchical
components is automatically achieved (Ana Rugina, 2007). Moreover the automatic generation of
safety analysis from design artefacts is not directly possible.

These abstract models assist analysts in understanding in a better way how the faults are
propagated through the different components of the embedded architecture and eventually cause
hazardous effects at system level.

As it has been previously affirmed, there are currently commercial tools in the market addressing
the assistance of performing tables and filling data. Yet the intelligent part of accomplishing either a
FMEA or FTA stays quite manual and time-consuming.

Among the different model based safety analysis techniques, Siemens composeR ESSaReL (The
ESSarel research project & tool) based tool comprises different analysis models. Even if ESSaReL
approves Markov chains and State charts as well, these two safety analyses methods are out of
scope in SafeAdapt project. Consequently only Component Fault Trees and State Event Fault
Trees will be explained.

a) Component fault trees (CFT)

This method consists of modifying the classical fault tree into an extended one i.e. a modular
version of traditional fault trees is proposed. In other words, independent sub-trees are considered
as modules being the main goal the generation of fault trees for different system components in
order to combine these ones afterwards to get the results for the system. It is important to point out
that many components have the same probability distribution (Weibull, Exponential, etc.) and
parameters are modelled only once.

CFTs are classified and can be instantiated in different projects. The analysis is conducted at
architectural level, constructing a system level CFT based on the previous defined architectural
specifications. Besides all the architecture elements are commented with low-level CFTs.

One of the main differences compared to the traditional fault tree is the appearance of two new
symbols. Additionally, each component can have input and output ports. These new symbols are
the basis to make an interconnection between components and higher-system levels.

Fault Tree Gates, the ones from traditional FTA together with input and output ports are shown in
Table 6.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

82

Gate
CFT Symbol
(IEC 61025)

Description

AND

The output event occurs if all input
event occur

OR

The output event occurs if at least
one of the input events occurs

Voter gate

The output event occurs if k or more
of the input events occur

Input failure ports
(Causal Inport)

Describe possible points for failure
propagation

Output failure
ports (Causal
Outport)

Describe possible points for failure
propagation

Internal fault
events

Similar to basic events

XOR gate

 The input event occurs if all input
events occur and an additional
conditional event occurs

NOT gate
 The output event occurs if the

contrary of the input occurs

Causal Edge

Connection edge

Table 6. Symbols for CFT

Figure 39 presents an example of a CFT.

Figure 39: CFT example

The information regarding a component can be developed independently and stored into a XML
library.

&

>=1

k:n

=1

Not

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

83

Still both quantitative and qualitative analysis can be carried out whereby CFT and Binary Decision
Diagram (BDD) concept can be applied as well. Qualitative analyses determine which
combinations of failure need to happen simultaneously so that the top event is caused. On the
other hand, quantitative ones compute the global probability of failure of the top event calculating it
from the basic events up to the top.

CFT used in ESSaReL supports graphical specification and efficient evaluation of CFTs via
probabilistic evaluation and minimal cut set analysis. Another feature is the feasibility of defining a
partial fault tree for each output failure port; whereas CFT can be appraised as a function of the
input ports and the internal fault events.

Two of the most important advantages of this automatic method are that repeated events are
represented only once and the “Cause and Effect Graphs” can contain several top-events which is
not possible at all in the classical fault trees. Having several top events allow the examination of
several failure modes and their influence at a time. As stated before, the top event probability is
calculated by the standard algorithms.

Figure 40: Two top-events (B. Kaiser, 2003)

In the same way traditional fault trees are extended into CFTs, FTs could be extended into
SaveCCM models (Grunske, 2006) (M. Kerholm, 2007).

Thanks to this extended mode, fault tree generation is not anymore manually generated, allowing
saving large quantities of time, money and effort. Furthermore the possible failure propagation
between different components and their dependencies are examined. Considering their names and
types, input and output failure ports are matched as well.

In short, the main features of the proposed CFT method are detailed below (Han, 2008).

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

84

Method Fundamental
Modelling
Formalism

Graphical/Textual
Modelling

Reuse of
Safety
Evaluation
Annotations

Modelling of
Architectural
Dependencies

Masking,
Filtering, and
Renaming of
Error/Failure
Propagation

Modelling of
Interaction
Between
Errors and
Operational
Modes

CFT Purely-
Event-Based

Graphical
modelling
(models are
saved in a XML
based
representation)

CFTs are
error types
and can be
instantiated
multiple times

Should be
specified in
the
underlying
architectural
model

Extra
modelling for

masking,
filtering and
renaming
required

Supported
only by a
recent
extension of
CFTs

Table 7. CFT modelling support architecture-based

Method Identification and
Specification of
Hazard Conditions &
Safety Requirements

Architecture
Specification
including
Architectural
Dependencies

Identification of
an Error Model of
a Basic
Architectural
Components

Generation of ErrorModels for
Hierarchical Components

CFT Hazard conditions
can be identified
with SHARD and
specified directly in
the CFT formalism

General purpose
language, limited
support for
architectural
modelling in ROOM
and SaveCCM

Based on
SHARD & IF-
FMEA

Generation of hierarchical
CFTs based on name matching
of incoming and outgoing
failure ports with limited
support of architectural
dependencies (currently
communication connection
only)

Table 8. CFT process support of architecture-based safety evaluation

Method Tool Description Automatic Support
for the Generation
of Error Models of
Hierarchical
Components

Probabilistic
Model Analysis
(Tool Back-end)

Generation of
Standard Fault
Trees

Generation of
FMEA tables

CFT UWG3 &
ESSaReL
(Windows-
based with
drag and drop
GUI)

Manual tool
guided
generation of
error models for
hierarchical
components

Probabilistic
evaluation by
translation of
the CFTs into
BDD

Automatic
flattening of
CFTs to
standard fault
trees

Currently not
supported,
however FMEA
table generation
similar to should
be possible

Table 9. CFT support of architecture-based safety evaluation

A component fault tree is a Boolean model associated to system development elements such as
components. It has the same expressive power as classic fault trees. As classic fault trees, also
component fault trees are used to model failure behaviour of safety critical systems. This failure
behaviour is used to document that a system is safe and can also be used to identify drawbacks of
the design of a system.

A separate component fault tree element is related to a component. Failures that are visible at the
outport of a component are models using Output Failure Modes which are related to the specific
outport. To model how specific failures propagate from an inport of a component to the outport,

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

85

Input Failure Modes are used. The inner failure behaviour that also influences the output failure
modes is modelled using the gates NOT, AND, OR, and Basic Event.

Every component fault tree can be transformed to a classic fault tree by removing the input and
output failure modes elements. Figure 41 (a) shows a classic fault tree and Figure 41 (b) a
component fault tree. In both trees, the top events or output events TE1 and TE2 are modelled.
The component fault tree model allows, additionally to the Boolean formulae that are also modelled
within the classic fault tree, to associate the specific top events to the corresponding ports where
these failures can appear. Top event TE1 for example appears at port O1. Using this methodology
of components also within fault tree models, benefits during the development can be observed, for
example an increased maintainability of the safety analysis model (Jessica Jung, 2013).

Figure 41: Example of a system FTA with composeR. (a) Classic Fault Tree and (b) Component
Fault Tree. For more information, please see (Jung, J.; Hoefig, K.; Domis, D.; Jedlitschka, A.;

Hiller, M., Oct 2013).

FMEDA Analysis with FMEDAexpress

Figure 42 shows a screenshot of a tool implementing the FMEDA methodology. This tool allows
splitting up the analyzed system into assemblies. Each assembly holds a certain set of parts to be
analyzed. Each part has a list of associated failure modes, effects and measures. The failure
modes come from a part list which contains parts and their failure modes. Every time the part is
used in an assembly, a new instance of that part is generated. If the failure modes of a part are
altered, the changes are automatically distributed to all references where the part is implemented.
The effects of a failure mode can also be reused. Once initiated, an existing failure mode can be
selected via a drop-down menu and associated to another failure mode. The same mechanism is
available for the measures. Furthermore, local effects are supplied as a textual field to add a
reason for the reuse of an effect. Another feature that is not available in classic FMEDA analyzes is
to color code a failure mode. Here we used the classifications done, in progress and critical to
mark failure modes as already analyzed, to be investigated further, e.g., by performing test, and as
critical if redesign is required. For further information, please take a look at (Höfig, 2014) and
(Reliability Engineering Resource Website).

As previously stated, this tool enables the calculation of hardware architectural metrics required by
ISO 26262-5:2011.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

86

Figure 42: Screenshot of the FMEDAexpress interface

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

87

6 Examples of Tool Chain Use

In this section, the most common ways of using the SafeAdapt methodology by industry are
presented.

6.1 Model-to-code approach

This paragraph outlines how to use the SafeAdapt toolchain in order to generate the system code
thanks to the model transformation mechanisms. Figure 43 shows the collaboration of tools in the
context of code generation.

Figure 43: Tool chain with focus on code generation

The starting point is the UML/EAST-ADL model. The Qompass model transformations can add so-
called containers: additional composite classes that encapsulate the original components and can
provide additional services, notably reflective data.

From this model, Papyrus export utility can be used to produce an AUTOSAR model, notably a
model using the ARTOP XML format. This model might need manual refinement, and then target
code can be produced using an AUTOSAR implementation like Arctic Studio. In the context of
SafeAdapt, several components are implemented using MATLAB Simulink and MathWorks tools
can produce resulting C code

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

88

6.2 Model-to-simulation approach

This paragraph outlines how to use the SafeAdapt toolchain in order to simulate and analyse the
behaviour of the system model, as shown in Figure 44. Simulation enables the designer to
quantitatively assess deployment and reconfiguration strategies. There are two simulation tools,
UNISIM-VP and ERNEST.

UNISIM-VP can simulate a vehicle distributed computing system including ECUs and networks
(CAN, LIN, FlexRay, etc.). UNISIM-VP simulator provides instrumentation capabilities and
hardware fault injection mechanisms (ECU, memory, interconnects and peripherals). The
simulation employs the same binary code that is also used for target hardware. Thus, code is
produced in the same way as described in the previous paragraph (since the currently chosen
processors for the demonstrators are not supported yet, the code needs to be recompiled for a
processor architecture supported by UNISIM-VP). Besides the code, a scenario and platform
descriptions are inputs for the simulation. The scenario drives simulation that produces an
execution trace. The scenario could contain different fault conditions (e.g. ECU not responding,
sensor defect, transient failure). These faults can be for instance produced in a specific memory
region or CAN messages. Simulation can serve to validate the software and reconfiguration
strategy in terms of time (deadline, reconfiguration delay, bandwidth and data traffic) and memory
space. In comparison to the demonstrators, the simulated distributed system may contain more
than two ECUs and thus enabling more complex (failure) scenarios.

In case of ERNEST, a different code is generated from the System model (partly SystemC) which
is then simulated at a higher level of abstraction. Compared to UNISIM-VP, simulation results are
obtained more quickly but reflect less platform details.

In both cases, the results have an impact on the original system model, which gets updated in
order to make a new iteration of the process.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

89

Figure 44: Tool chain with focus on simulation

6.3 Risk analysis approach

This paragraph outlines how to use SafeAdapt in order to fully address ISO 26262 throughout the
system lifecycle (specification, design and implementation phases). Figure 45 shows the tool chain
with a focus on this lifecycle. The generated code, including for instance the MATLAB components
is used for a Dynacar integration test. The test results are available in form of an XML file with
additional data. FMEA express (optionally FMEDAexpress) and composeR can be used to create
an FMEA analysis report from this data. The report is then used to update the EAST-ADL model
and the MATLAB component.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

90

Figure 45: Tool chain with focus on safety-analysis tools

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

91

7 Conclusions

In this document, the processes and tools that are used within the SafeAdapt project have been
shown. There is a focus on the verification and validation aspects for safe adaptive embedded
systems, since these are of particular importance for the certifiability of adaptive embedded
systems. In the context of the automotive domain the international ISO standard 26262 must be
respected, enabling the more efficient creation of safety-critical systems.

Three representative exploitations of the tool chain have been shown, namely code generation for
target, code generation for simulation and safety/risk analysis.

Several existing tools, partly provided by the partners of SafeAdapt need to collaborate to achieve
this goal. The use of well accepted international standards, namely UML/SysML, EAST-ADL,
MARTE, ARText and AUTOSAR mitigates interoperability problems. However, the used tools have
different input and output data format and gateways are needed to render them compatible. While
we will provide some gateways (for instance from the central UML/EAST-ADL architecture model
to AUTOSAR), the focus of SafeAdapt project is not on tool integration. Therefore, the data for
some tool will be converted manually as a proof-of-concept for their conceptual interoperability.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

92

Bibliography

(n.d.).

A. Joshi, M. W. (2005). Model-Based Safety Analysis Final Report.

al., M. K. (2007). The SAVE approach to component-based development of vehicular systems.
Journal of Systems and Software, 80(5):655–667.

Ana Rugina, P. F. (2007). Dependability Modelling with the Architecture Analysis and Design
Language (AADL). Technical report, CMU/SEI-2007-TN-043.

ARText. (n.d.). Retrieved from https://www.artop.org/artext/

AUTOSAR. (n.d.). Retrieved from http://www.autosar.org/

B. Kaiser, P. L. (2003). A New Component Concept for Fault Trees.

Commission, U. N. (1981). Fault Tree Handbook.

Cuenot, P.; Adler, N.; Otten, S. (2013, 02 28). Safe Automotive soFtware architEcture (SAFE).
Retrieved from WP3 - Deliverable D3.2.2 Proposal for extension of Meta model for
hardware modeling.

Dardar, R. (n.d.). Building a Safety Case in Compliance. Master Thesis in Intelligent Embedded
Systems.

EAST-ADL. (n.d.). Retrieved from http://www.east-adl.info/

Grunske, L. (2006). Towards an Integration of StandardComponent-Based Safety Evaluation
Techniques with SaveCCM. Second Int. Conf. on Quality of Software Architectures, QoSA
2006, volume 4214 of LNCS, pages 199–213. Springer.

Han, L. G. (2008). A Comparative Study into Architecture-Based Safety Evaluation Methodologies
using AADL’s Error Annex and Failure Propagation Models. 11th IEEE High Assurance
Systems Engineering Symposium, Faculty of ICT. Swinburne University of Technology,
Hawthorn, VIC 3122, Australia.

Headquarters, B. V. (n.d.). The Powers of Fault Tree Analysis.

Höfig, K. Z. (2014). metaFMEA-A Framework for Reusable FMEAs. In proceedings of the 4th
International Symposium on Model Based Safety Assessment (IMBSA).

IEEE Std. 1028-2008. (n.d.). IEEE Standard for Software Reviews and Audits, clause 3.8.

II, C. E. (n.d.). Hands on the ISO 26262 Standard. Functional Safety In Automotive Electronics.

International Organization for Standardization (ISO). (2011). ISO/DIS 26262: Road vehicles -
Functional safety.

Jessica Jung, A. J. (2013). A controlled experiment on component fault trees. In J. G. Friedemann
Bitsch, Computer Safety, Reliability, and Security, volume 8153 of Lecture Notes in
Computer Science (pp. 285-292). Heidelberg: Springer Berlin.

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

93

Jung, J.; Hoefig, K.; Domis, D.; Jedlitschka, A.; Hiller, M. (Oct 2013, Oct). Experimental
Comparison of Two Safety Analysis Methods and Its Replication. Empirical Software
Engineering and Measurement. ACM / IEEE International Symposium, (pp. 223,232).

MARTE. (n.d.). Retrieved from http://www.omgmarte.org/

OPENCOSS project. (n.d.). Retrieved from www.opencoss-project.eu

Reliability Engineering Resource Website. (n.d.). Retrieved from
http://www.weibull.com/basics/fault-tree/

Rolf, I. (2006). Fault-Diagnosis Systems. In An Introduction from Fault Detection to Fault
Tolerance. Springer.

SafeAdapt. (2015, March 17). Safe Adaptive Software for Fully Electric Vehicles.

SESAMO Project. (n.d.). Retrieved from http://sesamo-project.eu/

Spanfelner, B.; Richter, D.; Ebel, S.; Wilhelm, U.; Branz, W.; Patz, C. . (Mai 2012). Challenges in
applying the ISO 26262 for driver assistance systems. 5. Tagung Fahrerassistenz.
München.

Standard, I. (2011). Road vehicles — Functional safety.

Sweeden, R. D. (2013). Master Thesis: Building a Safety Case in Compliance with ISO 26262 for
Fuel Level Estimation and Display System.

SysML. (n.d.). Retrieved from http://sysml.org/

The ESSarel research project & tool. (n.d.). Retrieved from http://www.essarel.de/

UML. (n.d.). Retrieved from http://www.uml.org/

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

94

List of abbreviations

Abbreviation Definition

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

CSD UML Composite Structure Diagram

CFT Component Fault Tree

DC Diagnostic Coverage

EAST-ADL Electronics Architecture and Software Technology - Architecture
Description Language

E/E Electrical or/and Electronics

ECU Electronic Control Unit

FCM Federation Conceptual Model

FIT Failures In Time

FMEA Failure Mode and Effects Analysis

FMEDA Failure Modes, Effects and Diagnostic Analysis

FPGA Field-Programmable Gate Array

FTA Fault Tree Analysis

HARA Hazard Analysis and Risk Assessment

HIL Hardware-in-the-Loop

HW Hardware

LFM Latent-fault metric

MARTE Modelling and Analysis of Real-Time and Embedded systems

MIL Model-In-the-Loop

PMHF Probabilistic Metric for random Hardware Failures

SIL Software–In-the-Loop

SPFM Single-point fault metric

SW Software

SysML System Modelling Language

TADL Timing Augmented Description Language

UML Unified Modelling Language

V&V Verification & Validation

D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V
adaptive system behaviour

95

XMI XML Metadata Interchange

XML eXtensible Markup Language

