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Executive Summary 

This document defines the development, verification and validation processes for safe adaptive 
embedded systems, enabling the certifiability of adaptive embedded systems in the automotive 
domain with special focus on fully electric vehicles regarding ISO 26262 (International Organization 
for Standardization (ISO), 2011). 

One of the main SafeAdapt project objectives is to empower developers to create safety-critical 
software more efficiently by reducing costs and coping with certification requirements. As said 
above, the proposed SafeAdapt Methodology fully addresses the ISO 26262 standard and it is 
supported by model-based tools used for different steps from requirements to detailed software 
and hardware implementation and validation. On the one hand, system and components design is 
based on well-known standards such as UML (UML), EAST-ADL (EAST-ADL), SysML (SysML), 
MARTE (MARTE), ARText (ARText) and AUTOSAR (AUTOSAR).  Different tools are included 
since everyone has different strengths with respect to modelling, algorithmic capabilities, etc. On 
the other hand, early verification and validation is applied during the design process of the safe 
adaptive system; especially important in safety-critical systems where dynamic reconfiguration 
might impair safety, verification and validation throughout the design process. 

This document includes: 

• An introduction for the Task 4.2 “Specification of the design process for safe adaptive 
embedded systems and tool support for V&V adaptive system behaviour” 

• Terms and definitions needed to understand the concepts described in this document. 

• Detailed description of the tools included in the SafeAdapt Tool Chain. 

• Work-flow guidelines, according to the ISO 26262 standard, for the modelling, design, 
verification and validation of adaptive critical systems. 

• The most common ways of using the SafeAdapt Methodology by industry. 
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1 Introduction 

The promising advent of fully electric vehicles also means a shift towards fully electrical control of 
existing and new vehicle functions. In particular, critical X-by-wire functions require sophisticated 
redundancy solutions. As a result, the overall Electric/Electronic (E/E) architecture of a vehicle is 
becoming even more complex and costly. 

The main idea of SafeAdapt (Safe Adaptive Software for Fully Electric Vehicles) is to develop novel 
architecture concepts based on adaptation to address the needs of a new E/E architecture for Fully 
Electric Vehicles (FEVs) regarding safety, reliability and cost-efficiency. This will reduce the 
complexity of the system and the interactions between its functions by generic, system-wide fault 
and change handling. It also enables extended reliability despite failures, improvements of active 
safety, and optimized resources. This is especially important for increasing reliability and efficiency 
regarding energy consumption, costs and design simplicity. 

SafeAdapt follows a holistic approach for building adaptive systems in safety-critical environments 
that comprises methods, tools and building blocks for safe adaptation. The technical approach 
builds on a SafeAdapt Platform Core, encapsulating the basic adaptation mechanisms for re-
allocating and updating functionalities in the networked, automotive control systems. This will be 
the basis for an interoperable and standardized solution for adaptation and fault handling in 
AUTOSAR (AUTOSAR). Although it is not initially covered by the project, the SafeAdapt approach 
also considers functional safety with respect to the ISO 26262 standard (International Organization 
for Standardization (ISO), 2011) to support the certification of safety-critical systems in the e-
vehicle domain. 

SafeAdapt provides an integrated approach for engineering such adaptive, complex and safe 
systems, ranging from tool chain support, reference architectures, modelling of system design and 
networking, up to early validation and verification. For realistic validation of the adaptation and 
redundancy concepts, an actual vehicle prototype with different and partly redundant applications 
is developed. 

1.1 Document scope 

The purpose of this document is to define the development, verification and validation processes 
for safe adaptive embedded systems, that is, which tool should be used for which purpose and 
how the different tools interact within a common tool chain. Thus, enabling the certifiability of 
adaptive embedded systems in the automotive domain with special focus on fully electric vehicles 
regarding ISO 26262. 

One of the main SafeAdapt project objectives is to empower developers to create safety-critical 
software more efficiently by reducing costs and coping with certification requirements. As said 
above, the proposed SafeAdapt Methodology fully addresses the ISO 26262 standard and it is 
supported by tools used for different steps from requirements to detailed software and hardware 
implementation and validation. On the one hand, system and components design is based on well-
known standards such as UML (UML), EAST-ADL (EAST-ADL), SysML (SysML), MARTE 
(MARTE), ARText (ARText) and AUTOSAR. Different tools are included since everyone has 
different strengths with respect to modelling, algorithmic capabilities, etc. On the other hand, early 
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verification and validation is applied during the design process of the safe adaptive system; 
especially important in safety-critical systems where dynamic reconfiguration might impair safety, 
verification and validation throughout the design process. It should be considered that functional, 
non-functional, and trustworthiness properties need to be ensured even during reconfiguration 
transitions. 

1.2 Document outline 

The remainder of the report is structured as follows: 

• Section 2 includes terms and definitions that provide the necessary background required to 
properly understand the concepts described in this document. 

• In section 3, the tools included in the SafeAdapt Tool Chain are presented. These tools 
support the modelling, design, verification and validation of adaptive critical systems. In 
addition, the tools are depicted along the ISO 26262 lifecycle. 

• Section 4 provides detailed insight into the tools. For every tool it is provided a general 
description, its position along the V-lifecycle and the managed inputs and outputs artefacts. 

• Section 5 provides the work-flow guidelines for the design process and support of 
verification and validation phases. The aim is to help users to start working with the 
SafeAdapt Tool Chain, guiding their actions according to the ISO 26262 standard. 

• In section 6 the most common ways of using the SafeAdapt Methodology by industry are 
presented. 

• Section 7 drafts final conclusions. 
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2 Terms and Definitions 

Term Definition 

Architecture Representation of the structure of the item or functions or systems or 
elements that allows identification of building blocks, their boundaries and 
interfaces, and includes the allocation of functions to hardware and 
software elements (ISO 26262). 

Automotive 
Safety Integrity 
Level 

An Automotive Safety Integrity Level (ASIL) represents an automotive-
specific risk-based classification of a safety goal as well as the validation 
and confirmation measures required by the standard to ensure 
accomplishment of that goal. 

Component-
ISO 

ISO 26262 defines a Component-ISO as a non-system level element that 
is logically and technically separable and is comprised of more than one 
hardware part or more software units. A component is part of a system. 

Element System or part of a system, including components, hardware, software, 
hardware parts, and software units -- effectively, anything in a system 
that can be distinctly identified and manipulated. 

Error Discrepancy between a computed, observed or measured value or 
condition, and the true, specified or theoretically correct value or 
condition. 

Failure Termination of the ability of an element to perform a function as required. 
Note: Since an element's specification defines its required function, the 
standard recognizes incorrect specification as a potential a source of 
failure. 

Fault Abnormal condition that can cause an element or an item to fail. 

Functional 
Safety 

Absence of unreasonable risk due to hazards caused by malfunctioning 
behaviour of Electrical/Electronic systems. 

Hazardous 
Event 

A hazardous event is a relevant combination of a vehicle-level hazard 
and an operational situation of the vehicle with potential to lead to an 
accident if not controlled by timely driver action. 

Item Item is used to refer to a specific system or array of systems that 
implements a function at vehicle level to which the ISO 26262 Safety Life 
Cycle is applied. That is, the item is the highest identified object in the 
process and is thereby the starting point for product-specific safety 
development under this standard. 

Malfunctioning 
Behaviour 

Failure or unintended behaviour of an item with respect to its design 
intent. Hazard Potential source of harm caused by malfunctioning 
behaviour of the item. 
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Safety Goal A safety goal is a top-level safety requirement that is assigned to a 
system, with the purpose of reducing the risk of one or more hazardous 
events to a tolerable level. 

Safety 
Requirement 

Safety requirements include all safety goals and all levels of 
requirements decomposed from the safety goals down to and including 
the lowest level of functional and technical safety requirements allocated 
to hardware and software components. 

Validation Process of evaluating the system impact e.g., on safety. That is, 
validation checks and tests whether the system "does what it was 
designed for“, quoted by the performance indicators (based on user 
needs). 

Vehicle Reference to a passenger car that can be either simulated or a real 
vehicle. 

Verification Describes the test of a system/function against its requirements. 

Determination of completeness and correct specification or 
implementations of requirements from a phase or subphase. 
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3 Tool Chain 

3.1 Description 

SafeAdapt provides tool support and a methodology to ensure that innovative architecture 
solutions are equally assisted in the design process. The SafeAdapt Tool Chain includes 
modelling, design and validation support. This tool uses a model-based design flow, which is 
complemented by pre-existing AUTOSAR tool-chains, to design adaptivity. Moreover, the 
SafeAdapt approach enables early verification and validation of the systems non-functional 
requirements such as adaptability. 

In brief, the SafeAdapt Tool Chain is composed of the following tools presented in alphabetical 
order in Table 1. 

Tool Purpose 

Arctic Studio 
(ARCCORE)  

AUTOSAR modelling and code generation. 

ARTOP AUTOSAR reference implementation. Based on Eclipse 

AUTOSAR 
Gateway 

Export AUTOSAR from UML/EAST-ADL models (Papyrus add-on) 

composeR 
(SIE)  

Safety analysis tool compliant to FTA analysis as defined by various 
standards such as IEC 61508 or ISO 26262. 

Dynacar RT 
(TEC)  

Help during SW and HW testing phase. Configurable vehicle model 
running in a real-time system. Models from third parties (Simulink, 
Dymola) can be integrated on the same platform. 

ERNEST 
(ESK)  

Verification and validation of non-functional properties of networked 
embedded systems at early design stages. 

FMEDAexpress 
(SIE)  

Safety analysis tool for FME(D)A analysis according to IEC 61508 or ISO 
26262. 

Papyrus 
(CEA)  

General purpose UML modelling tool supporting SysML (including SysML 
specific diagrams), MARTE and EAST-ADL profiles. Moreover, it offers 
several possibilities to customize the user interface. 

Prossurance 
(TEC)  

Safety assurance management system. Prossurance supports 
compliance assessment and certification of safety-critical products. 
Construction of safety cases. 

Qompass 
(CEA)  

Design tool for model transformation and code generation. Qompass 
helps to deploy component-based systems taking into account SW and 
HW architecture. The tool supports realizing arbitrary interactions 
between software components. Qompass also supports a separation of 
concerns by enabling containers that embed the original component and 
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intercept its communication with the environment as well as offering 
additional service. 

Sophia Safety analysis, supports FTA analysis (Papyrus add-on) 

TTE-Tools 
(TTT)  

Tool for generation of a valid network configuration for end systems and 
switches for time-triggered-, rate-constrained and best-effort Ethernet 
based networks. 

UNISIM-VP 
(CEA)  

Cross-platform open source simulation environment. Its purpose is to be 
used during co-design, integration and validation of hardware/software 
systems. 

The simulation environment comprises a set of tools and services such 
as program loaders, OS ABI translators, instrumentation and graphical 
debugger. 

XMT 
(SIE)  

Model oriented system design. 

Table 1. SafeAdapt tools 



  
 

 
 

 

3.2 Tools along the ISO 26262 lifecycle 

Figure 1 presents an overview of the SafeAdapt tools regarding the design, implementation and V&V flow. 

 

Figure 1: SafeAdapt tools overview
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4 Detailed Description of Tools 

4.1 Arctic Studio 

4.1.1 General description 

The Arctic Studio tool chain provides a complete software development environment for 
automotive embedded software solutions based on the open industry-leading standard AUTOSAR. 
The tool chain supports all stages of an automotive Information and Communication Technology 
(ICT) project and provides tools for different types of tasks, such as application development, 
embedded platform development, and system integration. 

4.1.2 Tool along the lifecycle. 

Arctic Studio is applied during the development phase of the lifecycle. This tool addresses ISO 
26262, part 6 Product development at software level, phase 6-7 Software architectural design. 

4.1.3 Artefacts metamodel 

• Full access to AUTOSAR arxml files through the Artop open source project 

• Wizards for creating AUTOSAR projects and AUTOSAR files 

• Full support for handling configurations split into multiple files 

• AUTOSAR viewer with possibility to walk through the AUTOSAR configuration in a tree 
view 

• Support of AUTOSAR standard version 4.0.2, 4.0.3 and 4.1.1 

4.1.4 Inputs 

As an input Arctic Studio requires AUTOSAR configuration files that where either imported using 
arxml files or created inside of ArcticStudio. 

Furthermore, ArcticStudio supports the import of "Software Component Description" files (ARText) 
and provides importers for communication matrices in form of AUTOSAR ECU extract and CANdb 
files. 

4.1.5 Outputs 

The end result of the Arctic Studio tool chain is a configuration dependent RTE in form of C-code 
and a compiled, linked, and executable binary image (ELF) for the target platform. 

4.2 composeR 

4.2.1 General description 

composeR is a safety analysis tool compliant to FTA analyses as defined by various standards 
such as IEC 61508 and ISO 26262. 
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composeR works standalone with no other information provided, but it is also able to do a 
compositional safety analysis based on development artefacts such as SysML IBD or UML 
Composite Structure Diagrams (CSD).  

composeR is based on ESSaRel (The ESSarel research project & tool) and it has been developed 
with Eclipse/Magic Draw Plugin technologies.  

4.2.2 Tool along the lifecycle. 

This tool addresses the following parts of ISO 26262: 

• Part 3. Concept phase, sub-phase 3-8 Functional safety concept (supporting the derivation of 
functional safety requirements). 

• Part 4. Product development at system level phase, sub-phases 4-7 System design (system 
design verification), and 4-9 Safety validation. 

• Part 5. Product development at hardware level phase, sub-phases 5-9 Evaluation of safety 
goal violations due to random hardware failures. 

• Part 6. Product development at software level phase, sub-phase 6-7 Software architectural 
design (efficiency verification of the safety mechanisms). 

• Part 9. ASIL-oriented and safety-oriented analyses, sub-phases 9-7 Analysis of dependent 
failures and 9-8 Safety analyses. 

4.2.3 Artefacts metamodel 

The information is stored as XML file. In addition, import and export utilities are available 
(information format can be both EMF models and XML file). 

4.2.4 Inputs 

composeR requires as input (automated) XML-based information on design artefacts (IBD/CSD) 
on .mdzip files and (manually) information on safety behaviour using FTA/FMEA. 

4.2.5 Outputs 

composerR delivers as output (regarding the analysis) top event probabilities, minimal cut sets or 
FIT rates for part count. To sum up, composeR enriches XML file with failure information to be 
used in different tools. 

4.3 Dynacar RT 

4.3.1 General description 

The tool has been developed to help during the SW and HW testing phases. It is a configurable 
vehicle dynamics model running in a real time (1 millisecond execution) system (PXI from National 
Instruments). Models from third party software (Simulink, Dymola) can be integrated on the same 
platform. The system has several outputs which can be used as virtual sensors. These sensors 
can be connected to other software (SIL) or Hardware (HIL). 
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The model runs on a real time platform from National Instruments (PXI) and has been created 
using Labview RT. It runs over the Veristand platform which helps in model integration and 
connectivity. 

Tecnalia develops the SW and uses it for prototyping. 

4.3.2 Tool along the lifecycle 

Dynacar RT can be used for SIL and HIL testing: 

• SIL: The model can be connected with controller and vehicle subsystem virtual models for 
software verification. 

• HIL: Due to the PXI connection capabilities it can be easily connected to real components 
and ECU controllers in combination with virtual components for HIL testing. 

This tool addresses the following parts of ISO 26262: 

• Part 4. Product development at system level phase, sub-phase 4-9 Safety validation. 

• Part 6. Product development at software level phase, sub-phases 6-9 Software unit testing 
(test environment for software unit testing – SIL & HIL), 6-10 Software integration and 
testing (test environment for software integration testing – SIL & HIL) and 6-11 Verification 
of software safety requirements (test environment). 

4.3.3 Artefacts metamodel 

The model inputs/outputs can be linked internally using Veristand (from National Instruments) in 
case of being provided by another external model installed on the same HW or can be linked using 
any kind of communication, CAN, PROFIBUS, FLEXRAY, ETHERNET, Analog/Digital signals, etc. 
All the outputs can be selected and stored internally on the real time controller (PXI) in TDMS 
format (proprietary format from National Instruments for logging data) and can be easily exported 
into Matlab, Excel, etc. Then the tests can be analysed through the logged data. 

4.3.4 Inputs 

Dynacar RT is a virtual rolling chassis with component models (engine, transmission, brakes, 
steering, suspension and tires). Users can substitute the default models with their own models. 

Several inputs are available for model integration and vehicle control that are sorted according to 
the following components: 

• Aerodynamics 

• Auto 

• Brakes 

• Controls 

• Engine 

• Friction 

• Tires 

• Gearbox 
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• Powertrain 

• Torque Transfer Device 

4.3.5 Outputs 

Several outputs are available for virtual sensors and models which are sorted according to the 
following components: 

• Aerodynamics 

• Brakes 

• Chassis motion 

• Controls 

• Logitech steering wheel (G27) 

• Ground and Road 

• Powertrain 

• Simulation 

• Steering 

• Tires 

• Wheels 

 

4.4 ERNEST 

4.4.1 General description 

ERNEST is a simulation-based analysis tool for the verification and validation of non-functional 
properties of networked embedded systems. ERNEST checks, for instance, if given timing 
constraints are fulfilled. 

The framework is compatible with EAST-ADL and an AUTOSAR-Connection is in prototype state. 

The simulation framework is written in C++ and uses SystemC. 

The whole tool is delivered as Eclipse plug-ins and uses standard Eclipse technologies like EMF, 
Ecore, Xtend and CDT. 

4.4.2 Tool along the lifecycle. 

ERNEST is used at early design stages in order to evaluate the system architecture and verify the 
system’s non-functional properties. 

This tool addresses the following parts of ISO 26262: 

• Part 4. Product development at system level phase, sub-phases 4-7 System design 
(system design verification) and 4-9 Safety validation 
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4.4.3 Artefacts metamodel 

The ERNEST framework is based on a specific meta-model which describes the system 
architecture and constraints and it is developed using the Ecore standard. Architectures description 
modelled in EAST-ADL or AUTOSAR can be transformed into the ERNEST input model format via 
model-to-model-transformations. 

4.4.4 Inputs 

ERNEST uses architecture descriptions and constraints are described via the ERNEST format 
(metamodel), as input for realizing its analysis. This information can be generated from e.g. EAST-
ADL or AUTOSAR models via model-to-model transformations. 

4.4.5 Outputs 

As a result of the analysis after the simulation, ERNEST provides a visualization mechanism with 
an overview of the given constraints. The visualization shows at which point during the simulation 
timing constraints have not been fulfilled. Furthermore, ERNEST is able to back propagate this 
information into the input model, to mark the connections and functions related to the failed timing 
constraints. 

4.5 FMEDAexpress 

4.5.1 General description 

FMEDAexpress is a safety analysis tool for FMEDA analysis according to IEC 61508 or ISO 
26262. 

FMEDAexpress has been developed with C#. 

4.5.2 Tool along the lifecycle. 

This tool addresses the following parts of ISO 26262: 

• Part 3. Concept phase, sub-phase 3-8 Functional safety concept (supporting the derivation 
of functional safety requirements and the choice of the best concept alternative). 

• Part 4. Product development at system level phase, sub-phases 4-7 System design 
(system design verification) and 4-9 Safety validation. 

• Part 5. Product development at hardware level phase, sub-phases 5-8 Evaluation of the 
hardware architectural metrics and 5-9 Evaluation of the safety goals violations due to 
random hardware failures. 

• Part 6. Product development at software level phase, sub-phase 6-7 Software architectural 
design (efficiency verification of the safety mechanisms). 

• Part 9. ASIL-oriented and safety-oriented analyses, sub-phase 9-8 Safety analyses  

4.5.3 Artefacts metamodel 

FMEDAexpress manages information on XML files and it can be accessed using SQL. 
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4.5.4 Inputs 

FMEDAexpress requires as input involved components, failure modes, effects and 
countermeasures. All these pieces of information are provided manually. In addition, 
FMEDAexpress can import parts or component lists with failure modes given in XML format. 

4.5.5 Outputs 

FMEDAexpress delivers as output: dangerous detected/dangerous undetected failure rates, 
Single-point fault metric (SPFM), Latent-fault metric (LFM), Probabilistic Metric for random 
Hardware Failures (PMHF), Diagnostic Coverage (DC), FMEDA report. Together with this 
information, the tool also provides some extra reliability information: Mean Time Between Failures 
(MTBF), Mean Time To Failure (MTTF) and so on. In addition, entire data is available in XML 
format to be further processed in other tools. 

4.6 Papyrus 

4.6.1 General description 

Papyrus is a general purpose UML modelling tool. It consists of a set of Eclipse plug-ins. It 
supports the UML extension mechanisms in the form of profiles and offers several possibilities to 
customize its user interface. In particular, Papyrus supports the profiles SysML (including SysML 
specific diagrams), MARTE and EAST-ADL. 

Papyrus is an official Eclipse project and it is available within the Eclipse modelling bundle. Within 
the scope of SafeAdapt project, Papyrus 1.0.x coming with Eclipse Luna will be used. More 
information about Papyrus can be found on Eclipse.org/papyrus. It is the base for the model 
transformation and code generation tool Qompass, which is presented in Section 4.8. 

4.6.2 Tool along the lifecycle. 

The tool is used to manage the system model. It exports models towards AUTOSAR and receives 
results from the simulation tools ERNEST and UNISIM-VP. 

This tool addresses the following parts of ISO 26262: 

• Part 3. Concept phase, sub-phases 3-5 Item definition, 3-7 HARA and 3-8 Functional safety 
concept. 

• Part 4. Product development at system level phase, sub-phases 4-6 Specification of the 
technical safety requirements, 4-7 System design and 4-9 Safety validation. 

• Part 6. Product development at software level phase, sub-phase 6-6 Specification of the 
software safety requirements. 

4.6.3 Artefacts metamodel 

Papyrus 1.0.x uses the UML 2.5 meta-model, SysML 1.2, MARTE 2.1.12 and EAST-ADL 2. 

4.6.4 Inputs 

System/application model in form of UML 2.5 model. Simulation results (format needs to be 
defined). 
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4.6.5 Outputs 

The output of the Papyrus base tool is an updated UML or SysML model. However, Papyrus has 
several add-ons, notably Qompass described below and an AUTOSAR gateway. The latter allows 
exporting AUTOSAR models in form of UML models applying an AUTOSAR profile or in form of an 
XML file compatible with ARTOP, the standard AUTOSAR implementation within Eclipse.  

4.7 Prossurance 

4.7.1 General description 

Prossurance is a safety assurance management system to support a cost-effective compliance 
assessment and certification of safety-critical products in sectors such as aerospace, railway, 
maritime and automotive. 

Prossurance can work in two different ways: as a file-based or database-base (Postgress) tool. 
This tool has been developed with the following technologies: Eclipse with GMF and EMF, XText, 
Subversion (SVN) Team Provider for artefact versioning if desired, a subversion client such as 
TortoiseSVN, Java Environment 1.7 and Windows Operating System.  

Prossurance is a set of solutions built on top of the OPENCOSS project (OPENCOSS project). 

4.7.2 Tool along the lifecycle 

Since Prossurance addresses the construction of safety cases, it is used along all phases of the 
system concept and development processes. Due to the complexity of this, in SafeAdapt the focus 
will be on the Safety Concept (sub-phases 3-5 Item definition, 3-7 HARA and 3-8 Functional safety 
concept). 

4.7.3 Artefacts metamodel 

Proprietary metamodel including concepts of: regulations, general standards, company 
procedures, etc. 

Mainly files in common formats (Word, Excel, PDF, txt…) are used to register pieces of evidence. 

Prossurance manages the following own formats: 

• EMF for managing and persisting semantic data at a higher level of abstraction 

• GMF for notation with diagramming data that represents shapes and connections displayed 
in graphical editors 

• XText for the use of restricted language and structured property descriptions to support 
compositional certification. 

4.7.4 Inputs 

• Standards, Regulations and Company Procedures are manually transformed into 
Prossurance concepts. 

• Argumentation Patterns are used as a way for reusing successful safety strategies. 

• Safety Argument Contracts are used in case of modular/compositional certification. 



  
D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V 
adaptive system behavior 

 

24 
 

• Work Products are stored and managed as artefacts/pieces of evidence. 

4.7.5 Outputs 

Users can save diagramming data as images that can be inserted/copied to any report. In addition, 
data are available in EMF (models), GMF (notations) and XText formats. 

4.8 Sophia for Papyrus 

4.8.1 General description 

Sophia is a framework devoted to Model Based Safety Assessment Support. Sophia is fully 
integrated with the Papyrus modelling tool (see section 4.4) and provides dedicated modules to 
support the various safety assessment techniques (FMEA, FTA, qualitative and quantitative 
reliability analysis) used to satisfy certification requirements and covering different stages of safety 
assessment life-cycle according to different standards. These modules are provided as various 
Eclipse features that can be embedded within an Eclipse environment. Safety modelling is based 
on dedicated UML profiles applied on the existing system design model. These profiles can be 
applied either on a SysML model or on DSLs implemented using UML profiles extension 
mechanisms. Various analyses are achieved either directly or using external formal tools in an 
integrated way through dedicated gateways (languages supported are AltaRica and SMV); results 
are presented within the modelling environment. 

It is currently not clear, whether we will use of Sophia within SafeAdapt. Therefore we will focus on 
the other safety analysis tools in chapter 5. 

4.8.2 Tool along the lifecycle. 

The tool is used to perform different kinds of safety analysis required at the various stages of the 
safety assessment life-cycle (Preliminary Hazard analysis, FMEA, FTA, minimal cut-sets, critical 
sequences). 

Sophia promotes an innovative cooperative approach of safety assessment and system design 
processes. The two processes share a common model of architecture and safety assessment 
starts at early stages to issue recommendations or refined safety requirements to design process, 
while designers evaluate the impact of possible solutions taking into account other evaluation 
criteria such as performance or real-time issues. 

Technically, Sophia provides seamless means to build a safety model from the design architecture 
model using dedicated annotations and provides tools or gateways to formal tools (ARC, NuSMV, 
xFTA) to produce artefacts for safety justification. Moreover Sophia provides automatic 
documentation generation. 

Main features are: 

• Safety Requirements modelling and traceability 

• PHA (Preliminary Hazard Analysis) 

• FTA (Fault-tree Analysis – Automatic fault-tree generation from annotated model) and 
minimal cut-sets computation 
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• FME(C)A (Failure Modes, Effects and Criticality Analysis) 

• Safety properties Analysis using model-checking tool  

Sophia is compatible with ISO 61508 standard and provides support for ISO 26262 and EN 50128. 
The current version of Sophia provides support for the following parts of ISO 26262: 

• Part 3-7 HARA and 3-8 Functional safety concept. 

• Part 4. Product development at system level phase, sub-phases 4-6 Specification of the 
technical safety requirements, 4-7 System design and 4-9 Safety validation. 

• Part 6. Product development at software level phase, sub-phase 6-6 Specification of the 
software safety requirements. 

4.8.3 Artefacts metamodel 

Papyrus 1.1.x uses the UML 2.5 meta-model, SysML 1.2, MARTE 2.1.12 and EAST-ADL 2. Sophia 
handles SysML models and dedicated DSLs based on UML/SysML. The approach could also be 
applied to EAST-ADL but it would be wiser to study a way of adapting Sophia to its error-model. 
The general annotation for error propagation is quite similar to that provided in EAST-ADL, but 
Sophia is richer regarding FMEA and quantitative analysis artefacts. Sophia annotations for 
propagation analysis can also be applied to hardware models. The framework is fully integrated 
with Papyrus and is extensible to support added functionalities.  

4.8.4 Inputs 

System/application model in form of UML 2.5 model and safety annotations provided using 
dedicated profile. For FMEAS inputs can be provided from excel sheets.  

4.8.5 Outputs 

The output of the Sophia tool depends on the analysis performed. Dedicated documentation is 
generated according to the type of analysis. Results are displayed within the Papyrus tool and can 
be consulted either by safety experts or by designers. Fault-trees are generated in OpenPSA 
format which is an exchange format used by several RAMS tools such as xFTA or GRIF. Exports 
of FMEAs can also be achieved in excel format. 

Safety Requirements can be consulted from the design view of the system and allocated to 
components.  

4.9 Qompass 

4.9.1 General description 

Qompass is a design tool for model transformation and code generation. The Qompass tool helps 
designers to deploy component-based systems. This means that designers take into account not 
only the SW architecture but also the HW architecture and allocation of SW to HW. The tool has a 
support for realizing arbitrary interactions between software components. These interactions are 
defined in a model library. Thus, it is possible to target multiple middleware technologies, e.g. 
interaction styles used in automotive domain, e.g. communication via the AUTOSAR virtual 
function bus (though not realized yet). Qompass also supports a separation of concerns by 



  
D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V 
adaptive system behavior 

 

26 
 

enabling containers that embed the original component and intercept its communication with the 
environment as well as offering additional service. Containers in the context of SafeAdapt could 
serve two purposes: 

• Provide additional information about a component (“self-X”), in particular non-functional 
information such as the resource usage and timing constraints. This information can be 
used to support reconfiguration decisions at runtime, such as the eligibility of components 
to execute on a certain node. The sum of this additional information provide a kind of 
model@runtime 

• Support the implementation of safe reconfiguration algorithms that assure consistency 
during the migration of components with a state from one node to another. For instance, 
Quiescence developed by Kramer blocks new components requests, waits for ongoing to 
finish and then copies the component state and retargets connections. The interception 
facilities of a container shall use the runtime mechanisms provided by the safe adaptation 
core. 

Qompass also supports the generation of C/C++ code. However, such code is probably not used in 
the context of SafeAdapt (except for some experimentation), as code is primarily generated from 
AUTOSAR tools. 

4.9.2 Tool along the lifecycle. 

This tool is used in combination with Papyrus tool. So, for further details consult Papyrus tool. 

4.9.3 Artefacts metamodel 

Qompass takes component, platform and allocation descriptions defined in UML 2.4 or UML 2.5 
format enriched with FCM and MARTE profile. 

4.9.4 Inputs 

Qompass takes system model in form of component, platform and allocation descriptions defined 
in UML 2.5 format enriched with EAST-ADL, FCM and MARTE. 

4.9.5 Outputs 

Results of the model transformations, e.g. added adaptation-aware interaction components and 
reflective information (model@runtime). The models are UML 2.4/2.5 models conforming to the 
standard Eclipse UML2 plugin. 

4.10 TTE-Tools 

4.10.1 General description 

Classification of the TTEthernet tool suite: Design tools 

Compatible with standard: TTEthernet is an SAE standard (SAE AS6802) 

The TTEthernet development tool suite is a product offered by TTTech Computertechnik AG. The 
SafeAdapt project will use the TTEthernet tool suite for the configuration of the data 
communication conducted via TTEthernet traffic and across TTEthernet based electronic switches, 
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end systems and control units. The detailed user manuals for the TTEthernet tool suite are 
delivered in combination with any TTEthernet tool delivery (license). 

Basically the TTEthernet tool suite consists of: 

• TTEPlan: TTEPlan is the TTEthernet network planning tool. Based on input provided to the 
tool, TTEPlan creates the whole network configuration databases. 

• TTEBuild: TTEBuild allows converting XML-based device configuration database files into 
binary configuration images required by the TTE Switches and the TTE End Systems. 

• TTELoad: TTELoad is an application suitable to configure a TTE Switch based on 
TTEthernet switch IP that also supports bootstrap configurations of TTE Switches. 

A general overview is provided in SafeAdapt deliverable D2.3 “Requirements for the Design 
Process and Tools for Safe Adaptation”. 

4.10.2 Tool along the lifecycle. 

The TTEthernet tools enable the developer / design engineer to conduct seamless design, create 
configuration and provide data loading for TTEthernet based networks. The tools are built around 
open XML data bases. 

These tools fully address the “6-8 Software unit design and implementation” part of ISO 26262 in 
relation with communications topic. 

4.10.3 Artefacts metamodel 

The TTEthernet Tools use XML file format as a representation of the binary code needed for the 
network and device configuration for easy and direct human readability. HEX or BIN file formats 
resulting from the TTEBuild Device Configuration tool can be used for direct download to the 
switches. 

Third party tools can be used as well in order to add or modify configuration of the parameters. 

4.10.4 Inputs 

TTEPlan: configuration data by human, interactively lead input routines for the network 
configuration. 

TTEBuild Network Configurator: TTEPlan XML output file. 

TTEBuild Device Configurator: TTEBuild Network Configurator output XML file. 

4.10.5 Outputs 

TTEPlan: XML representation of the schedule file including requirements. 

TTEBuild Network Configurator: XML representation of the network configuration file set. 

TTEBuild Device Configurator: XML representation of the target device switches and end-systems 
as well as one binary device configuration image per device in the network in BIN or HEX format. 
They can be used for direct download to the TTEthernet switches and can be used in combination 
with the End-system drivers. 
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4.11 UNISIM-VP 

4.11.1 General description 

UNISIM-VP is a cross-platform open source simulation environment based on SystemC industry 
standard. Its purpose is to be used during co-design, integration and validation of 
hardware/software systems. 

The simulation environment comprises a set of tools and services such as program loaders, OS 
ABI translators, instrumentation and graphical debugger. Supported hosts are Windows, Linux and 
Mac OS X. 

The available platforms are MPC755, MPC7447A, PPC440, Virtex-5 FXT, ARM7, ARM9, Star12X, 
TMS320C3X. 

4.11.2 Tool along the lifecycle. 

The UNISIM-VP simulation environment will be used to emulate the targeted hardware platform 
and hence to execute the embedded software. 

UNISIM-VP can serve as a foundation of a virtual validation environment, because it can be 
interfaced to test cases generators for a better fault coverage and to runtime verification tools for 
diagnosis of defects. Additional information about the use within SafeAdapt can be found in section 
6.2. 

The main use cases are: 

 Non-intrusive debugging and testing of software: Unmodified software can be debugged 
and tested using UNISIM-VP simulators without affecting either its functional or temporal 
behavior. Thanks to services, the user can drive simulation, profile the software, inspect the 
system status, instrument system under study (hardware pins, program variables, registers, 
etc.), and then analyze the result (trace analysis) 

 Hardware/software integration: The software stack can be debugged and tested within a 
representative hardware environment before the availability of the physical target hardware 

 Development of SystemC IPs (intellectual property) and new virtual platforms: UNISIM-VP 
is an open source (BSD license) simulation environment that comprises a SystemC module 
library, and a set of services (debugging, loaders…). It can be a foundation for the 
development of new SystemC IPs and new virtual platforms 

 Support the simulation of hardware faults using component attributes (parameters). These 
attributes are used to notify the simulator engine of the occurrence of a hardware fault. At 
each fault occurrence, respective architecture specific flags are set.   

4.11.3 Artefacts metamodel 

There are difference levels at which UNISIM-VP architecture is described: 

 The hardware structure: description of hardware components (processor, memory …) and 
their interconnections. UNISIM-VP virtual platforms are interfacing third party tools using 
SystemC/TLM2 standards. An engineer has to write specific SystemC module to interact 
through hardware interface.  
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Today there is no generic meta-model, works are planned to generate the top-level 
simulator file from UML/MARTE models. 

 Configuration of hardware, i.e. configure clock frequencies or memory size: Described by 
XML files corresponding to a small schema definition. 

 Ad hoc simulation module is used to supporting hardware fault strategy. 

4.11.4 Inputs 

Embedded software binary with debugging information. 

1. Full stack application software 

2. Simulator configuration XML file corresponding to an XML-Schema (see second bullet in 
preceding section) 

4.11.5 Outputs 

Embedded software execution trace (instructions, software symbols, hardware registers, hardware 
interface). 

4.12 XMT - The CHROMOSOME Modelling Tool 

4.12.1 General description 

CHROMOSOME stands for Cross-domain Modular Operating System or Middleware. XMT is the 
Eclipse-based model-driven design tool of CHROMOSOME with automatic code generation 
capabilities for static configuration of the target system. CHROMOSOME has a large set of 
designated features and is designed to evolve over time. It is completely open source and hence 
transparent to developers and end users. 

4.12.2 Tool along the lifecycle. 

CHROMOSOME (often abbreviated by XME) is a domain-independent, data-centric middleware for 
cyber-physical systems. From the point of view of an application component, CHROMOSOME 
abstracts from basic functionality that is traditionally found in operating systems and middleware, 
like scheduling and communication. Apart from that, it offers model-driven design tools with code 
generation capabilities that allow a user to design the distributed system in an abstract way. So, it 
is related to the phase of “product development at software level”. 

4.12.3 Artefacts metamodel 

Currently there is no data exchange with other tools in the toolchain available. Software 
components are modelled manually and the output is target code. 

4.12.4 Inputs 

The tool requires information about software components and how functions interact with each 
other. There is no automated import for information from other tools. 

4.12.5 Outputs 

The output is target code. 
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5 Guidelines and Methodology 

This section provides our work-flow guideline for the design process and support of verification and 
validation phases. The aim is to help users to start working with the SafeAdapt Tool Chain, guiding 
their actions according to ISO 26262 "Road vehicles – Functional safety". 

This standard is intended to be applied to safety-related systems that include one or more 
electrical and/or electronic (E/E) systems and that are installed in series production passenger cars 
with a maximum gross vehicle mass up to 3 500 kg. ISO 26262 does not address unique E/E 
systems in special purpose vehicles such as vehicles designed for drivers with disabilities. 

ISO 26262 defines functional safety for automotive equipment applicable throughout the lifecycle 
(management, development, production, operation, service, decommissioning) of all automotive 
electronic and electrical safety-related systems. It aims to address possible hazards caused by 
malfunctioning behaviour of E/E safety-related systems, including interaction of these systems. 

More precisely, it is a risk-based safety standard, where the risk of hazardous operational 
situations are qualitatively assessed and safety measures are defined to avoid or control 
systematic failures and to detect or control random hardware failures, or mitigate their effects. 

To this end, it comprises around 750 clauses on approximately 450 pages, 9 normative parts and a 
guideline as the 10th part. ISO 26262 is based upon an industry-standard V-model as a reference 
process model as it is shown in Figure 2. 
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Figure 2: Overview of ISO 26262 



  
D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V 
adaptive system behavior 

 

32 
 

One of the main SafeAdapt project objectives is to empower developers to create safety-critical 
software more efficiently by reducing costs and coping with certification requirements. As said 
above, the proposed SafeAdapt Methodology fully addresses the ISO 26262 standard and it is 
supported by an integrated tool chain that follows a model-based design flow, which is 
complemented by pre-existing AUTOSAR tool chains. Specifically, SafeAdapt Methodology 
focuses on the following phases of the ISO 26262 safety life-cycle:  

 Concept phase, (Part 3)  

 System level development – specification, (Part 4)  

 Software level development, (Part 6)  

 System level development – integration and validation (Part 4) 

As shown in next figure, these parts of the standard are digitalised with the Prossurance tool using 
its prescriptive knowledge management functionality. Such functionality allows the management of 
standards information as well as any other information derived from them, such as interpretations 
about intents, mapping between standards, etc.  
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Figure 3: Overview of ISO 26262 in Prossurance tool
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5.1 Concept phase 

ISO 26262-3:2011 specifies the requirements for the Concept phase for automotive applications, 
including the following: 

 • item definition, 

 • initiation of the safety lifecycle, 

 • hazard analysis and risk assessment, and 

 • functional safety concept. 

As shown in next figure, the Concept phase is digitalised with the Prossurance tool using its 
prescriptive knowledge management functionality. This functionality manages standards 
information as well as any other information derived from them, such as interpretations about 
intents, mapping between standards, etc. The process and activities which are required to be 
carried out in order to address the Concept phase are defined with Prossurance tool. In addition, 
required and produced assets and assurance artefacts are identified. In latter case this 
identification is shown through green relationships while red dotted relationships are used in case 
of required workproducts. 
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Figure 4: ISO 26262 Concept phase in Prossurance tool
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In the following chapters detailed guidelines are presented in order to address Concept phase in 
accordance with the standard. 

 3-5 Item definition 

As defined in the ISO 26262 standard, the Item Definition phase has two objectives. The first 
objective is to define and describe the item, its dependencies on, and interaction with, the 
environment and other items. While the second objective is to support an adequate understanding 
of the item so that the activities in subsequent phases can be performed. 

So, the first step of the safety design flow consists of identifying and describing the “item” under 
development. It represents the functions, components, or (sub)systems of particular concern in 
regards to functional safety. To perform the item safety analysis, it is essential to properly 
understand the item itself in terms of input(s)/output(s), functionality, interfaces, environmental 
conditions and to define the item target function, which is the function description in terms of 
outputs behaviour. At the beginning of the safety analysis activities, the boundary of the item and 
the item’s interfaces with other elements are determined.  

Following a top-down approach, Papyrus and Qompass tools allow accomplishing these objectives 
since they are based on SysML and EAST-ADL standards. EAST-ADL2 provides an ontology and 
a concrete language for system definition and information management. The EAST-ADL2 
language contains multiple levels of abstraction: VehicleLevel, AnalysisLevel, DesignLevel, and 
ImplementationLevel. Each abstraction level corresponds to one specific view of the system 
architecture at a particular development stage. 

In addition, in SafeAdapt, Papyrus and Qompass tools are complemented with Excel templates in 
order to make easier the process to non-expert users. 

According to ISO 26262, the Item Definition work product should include the following information: 

 The functional and non-functional requirements of the item as well as the dependencies 
between the item and its environment shall be made available. 

 The boundary of the item, its interfaces, and the assumptions concerning its interaction with 
other items and elements, shall be defined considering. 

The first step begins with the item’s target feature definition (the feature description in terms of the 
vehicle’s output(s) behaviour) as it is shown in Figure 5. 
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Figure 5: Target features definition in Papyrus tool 

To carry out these activities, the following process has been set up in order to capture the 
requirements: 

 One partner has been chosen as responsible for the integration of all contributions. This 
action should be done in a regular base and exceptionally when a requirements review 
meeting was arranged. 

 There is a Requirements mother file template (in Excel format) as a basis where 
changes/enhancements should be specified. 

 The current version of the requirements will be stored in the file named as 
[date]_SafeAdapt_Requirements_V[xy].xlsx (i.e. "2014-03-28_SafeAdapt_Requirements 
_V01.xlsx"). In this way versions shall be recognizable by its date and its version number. 

 The specific partners contributions will be stored in a file following name syntax: 
[date]_SafeAdapt_Requirements_V[xy]_[Companyacronym].xlsx (i.e.: "2014-03-
28_SafeAdapt_Requirements _V01_TTT.xlsx"). As a first action prior to make 
modifications, the mother file will be always copied under the partner specific file name and 
then it is possible to start working. Everything new will be marked with red colour. 

 The partner responsible for the integration will integrate the changes into the requirements 
mother file. And then, partner specific files will be stored in an auxiliary directory. 
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As a result of this process, all functional and non-functional requirements will be specified and 
reviewed. For instance, some requirements are shown in Figure 6. 

 

Figure 6: Requirements in Excel format 

Then, the specified requirements are introduced/updated into the Papyrus tool. Papyrus 
differentiates between functional and quality requirements (which typically focus on some non-
functional property of the system). So, requirements can be formalized using the constraints of 
EAST-ADL, including, timing, safety and behaviour. A requirement element is linked to any other 
element using a Satisfy relation. A Derive relation between requirements supports tracing between 
an original and derived requirement. The Refine relation links the requirement and the constraint, 
or other element used to specify the textual requirement in more detail. Finally, requirements can 
be grouped and structured using the RequirementContainer construct. 

In this way, Figure 7 shows an example of the requirements specification. 
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Figure 7: Requirements in Papyrus tool 

 

Figure 8: Allocations of requirements to features in Papyrus  
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 3-6 Initiation of the safety lifecycle 

As defined in the ISO 26262 standard, the initiation of the safety lifecycle phase has two 
objectives. The first objective is to make the distinction between a new item development and a 
modification to an existing item. The second objective is to define the safety lifecycle activities to 
be carried out in such case. 

Consequently, in case of a modification of an already existing item or its environment, an impact 
analysis is required and a tailored safety lifecycle is advisable. In this special case, and according 
to ISO 26262, the impact analysis shall identify and describe the intended modification applied to 
the item or its environment and assess the impact of these modifications. 

Therefore, with the hypothesis that the safety analysis is already available (inherited from original 
item), the most convenient approach is the bottom-up one, i.e. by verifying the impact in terms of 
differences in hazard list and risk assessment outcomes. 

 

 3-7 Hazard analysis and risk assessment 

In terms of ISO 26262, the objective of the hazard analysis and risk assessment is to identify and 
to categorise the hazards that malfunctions in the item can trigger and to formulate the safety goals 
related to the prevention or mitigation of the hazardous events, in order to avoid unreasonable risk. 
As a final step, the hazard analysis, risk assessment and the safety goals should be verified. 

In order to evaluate the risk associated with the item under safety analysis, a risk assessment is 
carried out. A risk assessment considers the functionality of the item and a relevant set of 
scenarios (operating conditions & environmental conditions). To identify hazards, the potential 
sources of harm, it is helpful to define the malfunction(s) related to the item. If the item target 
function(s) has been correctly identified and described, the malfunction can be always defined in 
terms of anomalies of function activation. To assess the risk level, hazardous events, the hazard in 
concomitance with a particular scenario, is considered.  

As required by ISO 26262, for each identified hazardous event, the severity, controllability and 
exposure values should be ranked, to determine the associated Automotive Safety Integrity Level 
(ASIL) that shows the level of risk. It is important to remark that the controllability levels assigned to 
the various situations should be assessed through specific testing on the road such as fault 
injection testing. ASIL specifies the item’s necessary safety requirements for achieving an 
acceptable residual risk. A risk (R) can basically be described as a function F of the frequency (f) of 
occurrence of a hazardous event, the ability of avoiding the specific harm through opportune 
reactions of the involved persons (C = Controllability) and the potential severity of the resulting 
harm or damage (S = severity); the frequency of occurrence depends only on the probability of the 
driving scenario taking place in which the hazardous event can occur (E = exposure).  

During the concept phase a safety goal shall be defined for each hazardous event. This is a 
fundamental task, since the safety goal is the top level safety requirement, and it will be the base 
on which the functional and technical safety requirements are defined. The safety goal leads to 
item characteristics needed to avert the hazard or to reduce risk associated with the hazard to an 
acceptable level. Each safety goal is assigned an ASIL value to indicate the required integrity level 
in consonance with which the goal shall be fulfilled. For every Safety goal a Safe state, if 
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applicable, shall be identified in order to declare a system state to be maintained or to be reached 
when the failure is detected, so to allow a failure mitigation action without any violation of the 
associated safety goal. For each safety goal and safe state (if applicable) that are the results of the 
risk assessment, at least one safety requirement shall be specified. 

Papyrus and Qompass tools allow accomplishing these stage objectives. In addition, these tools 
are complemented with Excel templates in order to make easier the process to non-expert users. 

The following process has been set up in order to apply a Hazard Analysis and Risk Assessment 
(HARA) file template (in Excel format): 

 Vehicles, Items and Components Identification. The different elements involved are 
identified and classified according to the concepts defined in ISO 26262. These elements 
are vehicle (passenger car), functional items and components. 

 Situations Definition. Different situations in which a vehicle can be successfully tested are 
defined. These situations relate to possible items malfunctioning and exhibiting unintended 
behaviour, and will be described by operation conditions (possible factors of the 
environment as well as driver and vehicle status). 

 Malfunctions Identification. ISO 26262 addresses possible hazards caused by a malfunction 
of a safety-critical E/E system, including interaction between such systems. Therefore, the 
use cases will account for these malfunctions and subsequently identify possible conditions 
or triggers that cause them. At this point, FMEDAexpress (FMEA analysis) can be used for 
the extraction of new functional and non-functional hazards at item level not previously 
considered. 

 ASIL Determination. As it said before, the hazard analysis and risk assessment estimates 
the probability of exposure, the controllability, and the severity of the hazardous events. In 
conjunction, these parameters determine the ASILs of the hazardous events. At this point, 
malfunctions will be associated with situations focusing on controllability, loss and 
damages, and probability of exposure. With this information, the ASIL classification will be 
determined. ASIL C and D will drive the use cases selection as these are at the centre of 
interest. 

As a result of this process, the hazard analysis and risk assessment can be conducted such as it is 
shown in the following picture. 



  
D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V adaptive system behavior 

 

42 
 

 

Figure 9: Preliminary HARA in Excel format
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Then, the specified HARA is introduced/updated into Papyrus tool.  

Therefore, it is already possible to perform a Hazard analysis and Risk assessment to preliminarily 
evaluate the “safety relevance” of the Item under safety analysis. For this purpose, the hazards 
should be evaluated in different scenarios for assessing Severity, Controllability and Exposure. The 
hazard under analysis, when applied to the various operational situations (operative & 
environmental conditions), result in the so called “Hazardous Events” (HE), as you can see in the 
diagram in Figure 10. 

 

Figure 10: Preliminary HARA in Papyrus tool 

Each hazardous event has to be classified in terms of associated risk defined as its ASIL. Since 
the identified hazardous events are related to a target feature, it makes sense to define (for each 
hazardous event that appears safety relevant) the safety goals. In EAST-ADL2, the safety goal 
artefact is modelled as a specialization of requirement. The ASIL determined for the hazardous 
event should be assigned to the corresponding safety goal. ASIL and safe state are attributes of 
the safety goal metaclass. 

To verify the correctness and completeness of the preliminary hazard analysis and risk 
assessment performed previously, a deeper analysis has to be performed, by looking at 
architectural level. Therefore, the target function should be defined by deriving it from the target 
feature introduced at the upper abstraction level. At this point it is possible to define the 
malfunction as anomalies of the item's outputs. This serves as a more concrete basis for hazard 
identification and risk assessment, and therefore offers an opportunity for validation. 
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Note that this process may be iterative and parallel: hazards and risks may be identified and 
assessed at any abstraction level, but the information is solution independent and hazards, safety 
goals and safe states are managed at vehicle level. 

 3-8 Functional safety concept 

As defined in the ISO 26262 standard, the objective of the functional safety concept is to derive the 
functional safety requirements, from the safety goals, and to allocate them to the preliminary 
architectural elements of the item, or to external measures. 

The functional safety concept also describes the safety measures that are needed to avoid 
violation of safety goals. It shall contain assumptions about necessary driver actions if needed. 
Traceability between the item feature that causes the safety relevant failure and its related safety 
measures shall also be included. 

So, the first step shall be to derive the functional safety requirements to fulfil the specified safety 
goals based on the information given in the item definition and the results of the HARA. 

Papyrus allows accomplishing these objectives as follows. Safety goals and safe states are the 
results of the risk assessment. For each of these, at least one functional safety requirement must 
be specified. Note that what is expressed in the ISO 26262 standard as “preliminary architectural 
assumptions” is the purpose of the analysis architecture in the EAST-ADL2 language. At this level, 
the goal is to verify that the functional safety concept realises all the previously defined safety 
goals. More than one safety requirement could be associated with the same function. 

 

Figure 11: Functional analysis architecture in Papyrus tool 
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As shown in Figure 11, the “requirement” attribute of the safety goal “safeDriving” points to the 
“SafetyRelatedFunctionsMustBeAvailable” requirement (note that in general, it points to more than 
one attribute). The satisfy relationship maps it to the analysis architecture. 

The definition of the safety architecture should also include the specification of the warning and 
degradation concept. The warning- and degradation concept is the specification of how to alert the 
driver of potentially reduced functionality and of how to provide this reduced functionality to reach a 
safe state. The specification of the warning and degradation concepts and the necessary actions of 
the driver and other persons who are potentially at risk shall be used as input for the user manual 
of the item. 

A degradation concept is handled in the context of design pattern support within Papyrus (currently 
experimental). More details can be found in the SafeAdapt deliverable D4.1. 

On the other hand, the safety analyses performed by composeR (CFT) and 
FMEDAexpress(FMEA) support the activity of deriving functional safety requirements from safety 
goals and safe states (Standard, 2011). 

The main focus of FMEDAexpress (FMEA) during concept phase or C-FMEA (SESAMO Project) is 
the extraction of potential failures modes associated with the proposed functions or caused by 
interactions between system components. This method allows the analysis of concepts in early 
phases i.e. before the design is defined. In the same way, the best concept alternative can be 
found. In addition to the aforementioned benefits, these safety analyses allow the identification of 
system level testing requirements. 

A deeper description about how to address both systematic and random hardware failures by 
applying safety analysis is depicted in ISO 26262-9:2011, clause 8.  

As last task of the functional safety concept a traceability based argument can be used in order to 
argue about the consistency and compliance of the functional safety concept with the safety goals. 
This means that if the item complies with the functional safety requirements it will comply with the 
safety goals as well. In this area, Prossurance supports the easy development and maintenance of 
safety case guiding the process of collecting evidence and deducing safety arguments. That 
traceability based safety argumentation benefits the tight integration between system engineering, 
safety analysis and safety case processes. 

5.2 Product development: system level 

ISO 26262-4:2011 specifies the requirements for Product Development at System Level for 
automotive applications, including the following: 

 • requirements for the initiation of product development at the system level, 

 • specification of the technical safety requirements, 

 • the technical safety concept, 

 • system design, 

 • item integration and testing, 

 • safety validation, 
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 • functional safety assessment, and 

 • product release 

As shown in next figure, the Product Development at System Level phase is digitalised with the 
Prossurance tool using its prescriptive knowledge management functionality. This functionality 
manages standards information as well as any other information derived from them, such as 
interpretations about intents, mapping between standards, etc. The process and activities which 
are required to be carried out in order to address this phase are defined with Prossurance tool. In 
addition, required and produced assets and assurance artefacts are identified. In latter case this 
identification is shown through green relationships while red dotted relationships are used in case 
of required workproducts. 
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Figure 12: ISO 26262 Product development at system level in Prossurance tool
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In the following chapters detailed guidelines are presented in order to address Product 
Development at the System Level phase in accordance with the standard. 

 

 4-5 Initiation of product development at system level 

The main aims of this phase are to establish and plan the upcoming subphases of system 
development i.e. the specification of system architecture, the allocation of the technical safety 
requirements to hardware and software together with the hardware-software interface specification.  

 

 4-6 Specification of the technical safety requirements 

The objective of this subphase is to develop the technical safety requirements, which refine the 
functional safety concept considering the preliminary architectural design. 

Moreover, a second objective is to verify through analysis that technical safety requirements 
comply with the functional safety requirements.  

In SafeAdapt, the technical safety requirements are introduced/updated into the Papyrus tool as 
shown in previous Figure 7. Papyrus differentiates between functional and quality requirements 
(which typically focus on some non-functional property of the system). The user can specify 
several types of relationships. A requirement element is linked to any other element using a Satisfy 
relation. A Derive relation between requirements supports tracing between an original and derived 
requirement. The Refine relation links the requirement and the constraint, or other element used to 
specify the textual requirement in more detail. Finally, requirements can be grouped and structured 
using the RequirementContainer construct. Safety mechanisms should be inherited from the 
technical safety requirements defining the fault detection or their control within the system (see 
Figure 7). This includes the ability to detect random hardware faults and if appropriated, systematic 
faults as well. At the same time, the measures for the detection or control of failure modes in the 
communication channels need to be taken in account. In fact, all the necessary measures need to 
put in place so that a safe state can be achieved. 

 

 4-7 System design 

In this sub-phase, at first step, system design and the technical safety concept shall comply with 
the functional requirements and the technical safety requirements specification of the item. As a 
final step, safety analyses shall be executed as central topic of the product development to identify 
safety relevant failures caused by any element of the item under development that are able to 
cause harm to people. 

Thus, the first target of this sub-phase will be addressed with Papyrus tool. With this tool it is 
possible to follow the standard recommendations about the use of hierarchical design and 
avoidance of unnecessary complexity to achieve an adequate level of granularity. Such as it is 
shown in the following pictures, at  design level, functions from the higher level are refined into 
sub-functions which can be either composite (can aggregate other functions) or atomic (non-
concurrent entities). In addition abstract hardware platform is provided at this stage, together with 



  
D4.2 Specification of the design process for safe adaptive embedded systems and tool support for V&V 
adaptive system behaviour 

 

49 
 

an allocation of functions. Figure 13 shows the concrete functional architecture of a critical system 
in Papyrus. 

 

Figure 13: Concrete functional architecture of a critical system in Papyrus tool 

Allocation is performed at design level, where the item is realized with concrete functional 
elements. At this level, function prototypes of the Functional Design Architecture (FDA) are 
allocated to nodes in the Hardware Design Architecture (HDA) as shown in Figure 14. Moreover, 
every technical safety requirement should be allocated to hardware and/or software. Hence, these 
activities can be performed only at DesignLevel, when the item is realised with concrete functional 
elements (Papyrus and Qompass). As a result of the system design analysis, probably new 
requirements are identified. 
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Figure 14: Function-to-node allocation in a critical system in Papyrus tool 

Once the Hardware Technical Safety Concept built by hardware components has been captured, 
their initial failure rate data is defined. In fact, the technical safety requirements and safety 
measures are allocated into the different hardware elements. At this point, the Hardware 
Architectural Metric target values i.e. SPFM and LFM are defined at item level. These values are 
ASIL dependant and they will be verified at HW component level later on. In addition, the estimated 
value for Diagnostic Coverage (Latent and Residual) needs to be set at HW component level. 

Here another key challenge is that internal and external interfaces of each safety-related 
architectural element have to be defined to avoid safety-related effects on other elements. On the 
one hand, the implementation of the architectural elements could meet the criteria for coexistence 
(see part 9 chapter 6 of the automotive standard). On the other hand, Hardware Software Interface 
Specification (HSI) should describe all safety-relevant dependencies between hardware and 
software. This HSI will be refined during the hardware and the software development phases. Such 
models need to be abstract enough to ensure later tests efficiency; however, they also should be 
accurate to avoid false positives.  

Once all these models are available, EAST-ADL2 makes possible to perform safety simulations 
and analyses through external analysis tools. It must be taken into account that in an architecture 
specification, an error is allowed to propagate via design specific architectural relationships when 
such relationships also imply behavioural or operational dependencies (e.g. between software and 
hardware). Consequently, EAST-ADL2 models can be optimized in terms of cost, safety and 
performance with the framework Papyrus while all the necessary information (timing, redundancy 
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strategy, hardware platform) can be modelled with the input models of Qompass tool. Later on, the 
results of the optimization can be fed back to these models as shown in Figure 15. The blue, red 
and yellow bars in the chart correspond to results for different allocation strategies (a manual 
allocation and two automatic allocations). 

 

Figure 15: Results from the analysis/optimization in Papyrus (Qompass) tool 

The second target of this sub-phase is to provide evidence for compliance of technical safety 
requirements and functional safety requirements. In this way, to verify the system design, several 
complementary methods shall be applied such as: inspection and walk-through, simulation and 
safety analyses.  

Inspection and walk-through may be conducted depending on critical nature of components. 
Formal Inspection is a technical examination process during which a product is examined with the 
purpose of finding and removing defects. A defect is any occurrence in a software product (design, 
pseudo-code, code, comments, etc.) that is determined to be incomplete or incorrect with respect 
to software requirements and/or program standards. Walk-through is a form of software peer 
review" in which a designer or programmer leads members of the development team and other 
interested parties through a software product, and the participants ask questions and make 
comments about possible errors, violation of development standards, and other problems” (IEEE 
Std. 1028-2008). Subsequently, the possible actions to take as a result of verification activities will 
be decided. 
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For system design analysis based on simulation techniques the ERNEST tool will be used since, in 
early design stages, this simulation framework enables the analysis of non-functional properties as 
well as adaptive behaviour at a system-wide level (simulation of computation and communication 
within networked embedded systems are covered). The tool is interfaced to the Papyrus modelling 
tool obtaining the software model and the rough hardware design (ECU and buses). In addition, 
this interface enables to link the simulation results with modelled system requirements via back-
propagation. 

As input information a deployment plan is also used for allocating the software functions to ECUs. 
The ERNEST tool needs this information to collect groups of software functions to be scheduled. 
Finally, network descriptions and timing constraints for end-to-end timing chains are supported. 
These timing chains describe a path through the system, starting in a sensor, going through 
several functions realized by software components on ECUs and ending in actuators. For each 
function the worst case execution time and for each connection the worst case transmission delay 
of a message is considered. 

Obviously, the system developer has to provide the constraints for validation. Figure 16 depicts the 
definition of a timing constraint between two ports in ERNEST. 

 

Figure 16: Definition of a timing constraint in the ERNEST tool 

Finally, the ERNEST output is the validation of every constraint based on the generated timing 
traces during the simulation. The results are stored internally in the ERNEST model as so called 
“constraint validations” along with an indication when a violation occurred. In Figure 17 the 
visualization of the analysis results is shown where all events (stimulus and response) for a 
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constraint are visible. The time frame starts with a stimulus and it is only valid if a response occurs 
within the previously specified timing interval. 

 

Figure 17: Visualization of analysis results in the ERNEST tool 

In case constraints are violated under certain conditions, changes on the hardware or software 
architecture should be accomplished to fulfil all requirements. Finally, the simulation results can be 
back propagated into the model in the Papyrus tool, to mark the respective connections and 
functions regarding the failed timing constraints. 

For the safety analysis, error models capture the system internal faults, failures, error logic and 
propagations. Currently, a State-Machine (SM) based definition of error behaviour is supported 
through the EAST-ADL temporal behaviour constraint specification. Given an error model, the 
analysis of the causes and consequences of failure behaviour can be automated through tools. In 
SafeAdapt project, composeR allows static safety analysis in terms of FTA whereas 
FMEDAexpress addresses both qualitative and quantitative FMEA. The analysis leverage includes 
fault trees from functional failures to software and hardware failures, minimal cut sets, FMEA tables 
for component errors and their effects on the behaviour and reliability of the entire system. So, it is 
possible to evaluate the system architecture versus alternative architectures through fast checks 
which detect whether certain unsafe systems states are reachable and what the corresponding 
probability is. 

For a safety critical development both systematic and random hardware failures need to be 
managed. Systematic failures can be eliminated changing the design, modifying the manufacturing 
process or the operational procedure, documenting and using the documentation properly, etc. In 
other words, ensuring fault avoidance and fault removal of the design.  In fact, they must be 
avoided and controlled. In contrast, random hardware failures occur unpredictably during the 
lifetime of a hardware element. This second type of failure follows a probability distribution and it is 
needed to control and mitigate their effects. 

As depicted in ISO 26262-4:2011 clause 7, the different measures for the avoidance of systematic 
failures are stated in Table 2 (o = the method has no recommendation for or against its usage for 
the identified ASIL, + = recommended, ++ = highly recommended). 
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Deductive analyses (FTA, RBD, Ishikawa diagram) are highly recommended for ASIL C and D 
whereas inductive analyses (FMEA, ETA, Markov modelling) are highly recommended for all ASIL 
levels. As a result of this step, the causes of systematic failures and the effects of systematic faults 
are identified. 

Methods ASIL 
A B C D 

Deductive Analysis O + ++ ++ 
Inductive Analysis ++ ++ ++ ++ 

Table 2. Methods for safety analysis on the system design (II) 

As the main purpose of conducting such a safety analysis is the assistance in the design, 
qualitative methods can be sufficient. In any case, if necessary quantitative ones can be carried out 
as well. 

Consequently, and thanks to this analysis, external and internal causes of systematic failures are 
identified and the corresponding next measures are taken to either eliminate or reduce their effect. 

 

FMEDAexpress (Qualitative FMEA) 

As previously mentioned, qualitative methods at system level are highly recommended by ISO 
26262. Moreover, during this process not previously identified top level system malfunctions during 
HARA could arise. 

At this point, components are black boxes having their own functions described. As first step, the 
effect of each component failure mode without safety mechanism is analysed. These effects are 
the top level system malfunctions already identified in HARA. The previous step allows assessing 
the most critical failure modes or malfunctions of the system components.  

Afterwards, fault tolerance is achieved by means of defining internal or external safety mechanisms 
in order to control or mitigate these failure modes. In other words, the most critical malfunctions of 
the components are not propagated to others.  

Once the safety mechanisms are defined, they are taken into consideration to redefine the new 
effects. Hence if any extra safety mechanism was still needed, this lack would be found out. 

composeR (Qualitative FTA) 

In contrast to FMEA, Fault Tree Analysis is highly recommended for ASIL C and D, being just 
recommended for ASIL B. 

It is a complementary safety analysis to FMEA. It consists of performing Boolean logic diagrams to 
analyse causes and their combination into a top event or top level system malfunction violating the 
safety goal. To prevent the failure of the system to happen, safety mechanisms are introduced 
mitigating the component failure. 

The repetition of an event in several branches leads to a common cause failure. 

Figure 18 presents the example of a system FTA with composeR. 
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Figure 18: Example of a system FTA with composeR: (a) Classic Fault Tree and (b) Component 
Fault Tree. For more information, please see (Jessica Jung, 2013). 

 

composeR (Quantitative system FTA) 

This method whereby the residual risk from each safety goal is allocated into components is an 
extension of qualitative FTA. 

After assigning the residual risk target for each safety goal which is the same that the top event 
needs to achieve, each event in the fault tree needs to be completed with a value starting from the 
top until the bottom. Figure 19 presents an example of a FTA with failure probabilities with 
composeR. 
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(a) 

 

 

(b) 

Figure 19: Example of a FTA with Failure probabilities with composeR: (a) At component level, 
failure modes propagate from one component to another and (b). Within a component fault tree, 
the failure behavior of a component is modeled. 

 

In fact, in agreement with ISO 26262-5:2011, fault tree analysis is available for this purpose. To 
demonstrate the coverage of first failures, FMEA is recommended. During the application of 
FMEDA, a quantified version of FMEA, random hardware faults can be included which use 
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architectural metrics allocated to components to calculate the effects of random hardware faults 
using Single-point fault metric (SPFM) or Latent-fault metric  (LFM). 

The target value for SPFM and LFM for the element of the item architecture at system level shall 
be specified in the System Design. 

 

 4-8 Item integration and testing 

The integration and testing phase comprises three phases and two primary goals as described 
below: the first phase is the integration of the hardware and software of each element that the item 
comprises. The second phase is the integration of the elements that comprise an item to form a 
complete system. The third phase is the integration of the item with other systems within a vehicle 
and with the vehicle itself. 

The first objective of the integration process is to test compliance with each safety requirement in 
accordance with its specification and ASIL classification. The second objective is to verify that the 
“System design” covering the safety requirements is correctly implemented by the entire item. 

According to Spanfelner et al. (Spanfelner, B.; Richter, D.; Ebel, S.; Wilhelm, U.; Branz, W.; Patz, 
C. , Mai 2012), Figure 20 shows the trace of the different safety requirements. It contains also the 
design and test flow especially for software development. This trace is also pictured in ISO 26262-
10:2011 and here supplemented with additional information about the responsibility of the different 
levels of safety requirements. As shown in this figure, this sub-phase is carried out by several 
companies at different levels. 

 

Figure 20: Safety requirements, design and test flow from concept to software 
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 4-9 Safety validation 

The first aim of this sub-phase is to provide evidence of compliance with the safety goals and that 
the functional safety concepts are appropriate for the functional safety of the item. The second aim 
is to provide evidence that the safety goals are correct, complete and fully achieved at vehicle 
level. 

In other words, the safety validation criteria shall be specified based on the functional safety 
requirements and refined based on the technical safety requirements. During safety validation 
evidence shall be provided that the planned external measures are implemented as specified in the 
safety requirement documentation and that the technical solution satisfies the allocated safety 
goals. 

The Papyrus extension Sophia tool offers detailed means to model artefacts of verification and 
validation activities (using Verification and Validation extension) and to relate these artefacts to 
requirements. This facilitates planning and tracking V&V activities and their impact on the system 
parallel to the system’s development. 

Moreover, ISO 26262 establishes that the safety validation is performed through the assurance 
(based on examination and tests) that the safety goals are sufficient and have been achieved. To 
carry out this, the following methods allowed by the standard shall be applied: 

 Analyses through composeR, FMEDAexpress, UNISIM-VP and Dynacar RT (simulation 
based) 

 Reviews 

 

 4-10 Functional safety assessment 

The safety case is considered as an input of the Functional Safety Assessment, but the “Functional 
Safety Assessment Report” is an input for the Safety Case. It shows that activities should be 
performed in parallel. After a successful run of a functional safety assessment, ISO 26262 defines 
the “Release for Series Production” in its chapter/clause 11. 

Due to permanent need of human interactions for analysis, verifications, design decisions, 
validations etc. in this project the “Functional Safety Assessment” could be only partially 
considered. Some of the described methods for verification give already the hint that for complete 
functional assessment a complete tailored safety lifecycle has to be considered, including human 
influences. 

 

 4-11 Release for production 

This part of the ISO 26262 standard is out of scope of SafeAdapt project. 

5.3 Product development: hardware level 

The current SafeAdapt project does not fully cover this part of ISO 26262. Only main chapters 
addressed by the project have been included. 
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The tool chain is intended for development of systems with more focus on software than hardware 
development. Hardware is mainly seen as purchased part and only included for safety analysis and 
configuration aspects. 

 

 5-8 Evaluation of the hardware architectural metrics 

FMEDAexpress enables the calculation of hardware quantitative measures required by ISO 26262 
for hardware architectural metrics and the safety goal evaluation due to random hardware failures. 
In other words, these metrics capture the single contribution of each violating failure mode as a 
specific failure rate, according to its characterization. In short, these metrics have to be verified 
from the detailed design architecture using electronics parts reliability data consisting of   two types 
of base FIT rates: persistent FIT rates (related to permanent faults) and SER (Soft Error Rate)  
information (related to transient faults or soft errors).  

The tool calculates FIT rates such as RF, SPF, MPF_l and Diagnostic Coverage with respect to 
latent and residual faults which are computed to get the final SPFM and LFM metrics. The resulting 
values should be verified against the expected ones determined by the corresponding ASIL level. 

Table 3 depicts the possible source for the derivation of the target ISO 26262 Single-point fault 
metric and Latent-Fault Metric value. 

 ASIL A ASIL C ASIL D ASIL D 

Single-point 
fault metric 

n.a. ≥90 % ≥97 % ≥99 % 

Latent-fault 
metric 

n.a. ≥60 % ≥80 % ≥90 % 

Table 3. “Single-point fault metric” and “latent-fault metric” values 

 

 5-9 Evaluation of the safety goals violations due to random hardware failures 

ISO 26262 Part 5 Chapter 9 proposes two alternative methods to evaluate whether the residual 
risk of a safety goal violation because of random hardware failures of the item is comparable to 
residual risk of other items already in use. This process evaluates that the residual risk of violating 
a safety goal due to single-point faults, residual faults and dual-point faults is low enough. In 
SafeAdapt both methods are applied.  

The method 1 is based on a quantified FTA to calculate the so called “Probabilistic Metric for 
random Hardware Failures” (PMHF). There are clearly gaps in FTA tools of the market to calculate 
accurately this PMHF value thanks to formal representation and impact and of diagnosis coverage 
of safety mechanism (Cuenot, P.; Adler, N.; Otten, S., 2013). 

PMHF = single point faults failure rate + residual faults failure rate + (total safety related faults 
failure rate / 10-9 * delta) * latent multiple point faults failure rate   

Whereas PMHF presents a global approach, the failure rate class method (FRC) evaluates each 
hardware component individually. It especially addresses the individual evaluation of each residual 
and single-point fault and of each dual-point failure leading to the violation of the considered safety 
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goal. This method is based on Failure Rate Class and it is performed during quantified FMEDA. 
Most market available tools can calculate architectural metrics and residual risk based on method 
2, but systematic reuse is missing. 

5.4 Product development: software level 

ISO 26262-6:2011 specifies the requirements for Product Development at Software Level for 
automotive applications, including the following: 

 • requirements for initiation of product development at software level, 

 • specification of the software safety requirements, 

 • software architectural design, 

 • software unit design and implementation, 

 • software unit testing, 

 • software integration and testing, and 

 • verification of software safety requirements. 

As shown in next figure, the Product Development at Software Level phase is digitalised with the 
Prossurance tool using its prescriptive knowledge management functionality. This functionality 
manages standards information as well as any other information derived from them, such as 
interpretations about intents, mapping between standards, etc. The process and activities which 
are required to be carried out in order to address this phase are defined with Prossurance tool. In 
addition, required and produced assets and assurance artefacts are identified. In latter case this 
identification is shown through green relationships while red dotted relationships are used in case 
of required work products. 
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Figure 21: ISO 26262 Product development at software level in Prossurance tool
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In the following chapters detailed guidelines are presented in order to address Product 
Development at the Software Level phase in accordance with the standard. 

 

 6-5 Initiation of product development at software level 

To perform a dependent failure analysis at module level, software safety requirements resulting 
from this part need at least be available. 

 

 6-6 Specification of the software safety requirements 

Software safety requirements can be modelled in EAST-ADL using Papyrus as shown in Figure 7. 
Such specification of the software safety requirements also considers constraints of the hardware 
and the impact of these constraints on the software. 

 

 6-7 Software architectural design 

As stated in ISO 26262, the aim of the software architecture phase is to: 

 Design a software architecture that realizes the software safety requirements. 

 Verify the software architectural design 

The aim of the software architectural specification is to represent all software components and their 
interactions in a hierarchical structure. Static aspects as well as dynamic aspects are described. 
Moreover, every software component used in the software architectural design shall be 
categorized as: 

 newly developed 

 reused with modifications 

 reused without modifications. In this category, safety-related software components shall be 
qualified 

In this subphase the software safety requirements shall be allocated to sub-systems or software 
components, so that each inherits the highest ASIL of any requirement allocated to it. 

As shown in Figure 22, SafeAdapt methodology is aligned to EAST-ADL2 in which the 
implementation level is based on AUTOSAR standard. Thus, system models at implementation 
level specify the actual software and hardware architectures according to AUTOSAR. At the 
highest level of the AUTOSAR model, the definition of software architecture (set of software 
components and their relations) and their internal behaviour are represented by the set of runnable 
entities. Runnable entities are non-concurrent entities that are the allocation units of the Operating 
System (OS) tasks. 
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Figure 22: EAST-ADL and AUTOSAR scopes 

Transformation from the design (EAST-ADL2) to the implementation (AUTOSAR) level is a crucial 
step. In this project, the AUTOSAR gateway tool provides an enhanced transformation from EAST-
ADL2 design architecture to AUTOSAR vehicle architecture design and initial system configuration. 
The preliminary AUTOSAR model is generated following some predefined strategies. For instance, 
atomic functions from design level are transformed into runnable entities. Also hardware platform 
according to the AUTOSAR concept is generated from the EAST-ADL2 hardware platform 
specification. In addition, runnables are grouped into software components, which are allocated to 
the Electronic Control Units (ECUs) based on runnables allocation. Generation of software 
components corresponds to the compositional structure of functions. However, a final user can 
specify his constraints according to which runnable will be grouped in software components. 
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Figure 23: AUTOSAR model in AR gateway tool 

The upper part of Figure 23 shows the design architecture of the SafeAdapt model along with the 
allocation of application components to ECUs. The lower part shows a subset of the resulting 
AUTOSAR model in form of a UML model applying the AUTOSAR profile. The option to generate 
UML has the advantage that it enables a refinement of the AUTOSAR model in the same 
environment as the original EAST-ADL model. In a second step, it is also possible to generate 
ARXML which allows exchanging AUTOSAR models between tools through arxml (AUTOSAR 
XML) files as shown in Figure 24 

 

Figure 24: Generation of arxml files from AUTOSAR model in AR gateway tool  

This enables further refinement with tools supporting the import of this format, e.g. Arctic Studio. 
Using Arctic Studio, together with information about allocation of functions to the nodes, designers 
can improve the configuration at implementation level. Then it can further be refined and evolved 
by applying design space exploration that will partition runnable entities in tasks and schedule 
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them in a way that will optimize system end-to- end responses. In brief, Arctic Studio tool allows 
designers to define: 

 Hardware entities and topology with enough detail to support software configuration 

 Software components with runnables 

 Mapping to tasks and frames 

 Mapping to ECUs and busses 

Figure 25 shows a software architecture in Artic Studio. 

 

Figure 25: Software architecture in Arctic Studio tool 

In addition, it is possible to define mappings at different abstract levels such as between 
elementary or composite functions and appropriate AR software components or runnable. Through 
this realization relationship, software architecture can be traced back to functions, features and 
requirements. 
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Figure 26: RTE configuration in Arctic Studio tool 

From above we can deduce that Arctic Studio tool is used to represent the final software 
architecture of automotive embedded systems. As such, it includes the definition of the software 
components, their interfaces, execution timing, middleware (basic software) interactions, and so 
on. The model is sufficiently detailed to automatically generate and configure the platform software 
and integrate it on ECUs. 

Additionally, developers can take advantage of the support provided by Arctic Studio in relation to 
safety mechanisms such as:  

 Built-in self-test mechanisms for detecting hardware faults (testing and monitoring) in 
relation to Memory and Core 

 Run-time mechanisms for detecting software faults during the execution of software (Watch 
Dog) 

 Run-time mechanisms for preventing fault interference (memory partitioning for SW-Cs and 
time partitioning for applications). In this case and according to ISO 26262, part 6, clause 
7.4.11, the partitioning scheme and the partitioning framework of the operating system shall 
be specified to ensure freedom from interference. 

 Run-time mechanisms for protecting the End-to-End (E2E) communication protection for 
SW-Cs 

 Run-time mechanisms for error handling (on the basic software and hardware) 
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For all implemented safety mechanisms a safety manual is needed containing the fault model 
according to which the safety mechanism was developed and the constraints that must be fulfilled 
when applying the safety mechanism. 

The safety analysis method described below has to be performed during the software architecture 
phase in order to: 

 identify or confirm the safety-related parts of the software; and 

 support the specification and verify the efficiency of the safety mechanisms 

The analysis has to be performed according to the description in ISO 26262 part 9, clause 8. Fault 
Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA) are methods that can be used 
to verify the software architecture and SW safety concept. This type of analysis is done on 
software module level once the software architecture is released. 

Hence, composeR (FMEA) and FMEDAexpress are used to either identify or confirm the safety-
related parts and it supports the specification and verification of the safety mechanisms to mitigate 
both random hardware failures and software faults e.g. diverse software design. Such safety 
analyses should be performed separately for each SW module that has at least one ASIL 
requirement (i.e. not QM).  

Software failures, as systematic failures, do not require quantitative analyses but only qualitative 
analyses. 

To be sure about the independence between software components an analysis of dependent 
failures should be carried out as well. The aim of this analysis is to identify single cause that can 
invalidate a required freedom from interference between two software elements and lead to the 
violation of a safety requirement or safety goal. This type of analysis is done on software elements 
that could be affected by common cause failure or cascading failure.  

The identification of dependent failures (systematic/random) can be supported by FMEA. Similar 
parts with similar failures modes that appear several times in FMEDAexpress can give more 
information about these types of failures. ComposeR (FTA) can help in this identification as well. 
Examination of cut sets or repeated identical events of a FTA can indicate potential for dependant 
failures. The analysis has to be performed according to the description in ISO 26262 part 9, clause 
7. 

Finally, if as a result of such analyses new hazards are identified, they shall be introduced and 
analysed in the hazard analysis and risk assessment. 

 

 6-8 Software unit design and implementation 

At this phase, the goal is to specify the software units in accordance with the software architectural 
design and the associated software safety requirements, to implement the software units as 
specified and to verify the design of the software units and their implementation. 

Here, the first activity is to define and establish the specific rules for design and programming to be 
followed in the current project. Once these rules are clear, the team proceeds to use Arctic Studio 
tool. With this tool it is possible to follow the standard 26262 recommendations about the use of 
hierarchical design and avoidance of unnecessary complexity to achieve an adequate level of 
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granularity. Arctic Studio includes the definition of the software components, their interfaces, 
execution timing, middleware (basic software) interactions, etc. The model is sufficiently detailed to 
automatically generate and configure the platform software and integrate it on ECUs as it is 
illustrated in Figure 27. The last step, called Build, compiles all the generated files and runnables 
and builds the executable (.elf) file which is loaded in ECU for debugging and testing. Debugging 
helps to check the application whether it is working correctly as anticipated. If modification or 
correction is required then development process can be resumed again from the previous step. 

 

Figure 27: Arctic Studio tool workflow 

In parallel, an ASIL (ASIL-A to ASIL-D) must be allocated to each function. Typically all SW 
functions inherit the same ASIL as the SW module in a top-down approach. Moreover, every SW 
function is assigned a criticality class (C0 to C3, where C0 is not safety related): 

 C1: Interference free. No interference with safety related functionality 

 C2: Safety relevant. Latent fault 

 C3: Safety critical. Single-point fault 

The combination of ASIL target and criticality defines for each SW function what kind of safety 
measures should be considered for implementation for that SW function with reference to ISO 
26262-6:2011: Table 4 or similar. For example, if an ASIL D software module contains a function 
that is not safety related (i.e. does not have any safety requirement), then this function shall only 
implement measures to ensure independence and freedom from interference. 

On the other hand, the TTEthernet tools enable the developer / design engineer to conduct 
seamless design, create configuration and provide data loading for TTEthernet based networks 
(see Figure 28). The tools capture system-level communication requirements and automatically 
generate network- and device configuration- files, thus enabling seamless integration with existing 
design processes. 
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Figure 28: TTEthernet data flow for configuring a network 

By using TTEPlan, TTEbuild and TTELoad, the tools generate all files and data bases needed for 
the TTEthernet data communication based network, including a tool for loading appropriate files 
(TTELoad) to the hardware of the target network. Within the following, the work flow to configure a 
TTEthernet based network is described (see Figure 29). 

The development/design process is started by using TTEPlan. The designer will reply to a set of 
interactively lead input masks entering requirements and parameters. By this computer aided 
process the high level communication requirements for the network will be described and defined. 
This includes parameters for the physical and the logical topology of the network under 
consideration. Furthermore, the virtual links, including their IDs, timing requirements and possible 
frame sizes will be defined. Finally, synchronization parameters and requirements are defined (i.e. 
the SAE AS6802 clock). All information is stores in XML file format for further processing. The 
network schedule is available as soon as all steps are completed and the data is automatically 
processed by TTEPlan. 

In a next step, the resulting XML file from the TTEPlan tool is used as an input file to TTEBuild 
Network Configuration tool supporting the network configuration process. Everything is 
implemented in a set of XML files. The network schedule calculated by TTEPlan is included in this 
set of XML files. The network configuration is independent from the target hardware. It simply 
describes all details necessary to configure the network accordingly. This comprises the 
schedule(s), the port assignments, the buffer allocation for all devices planned in the network 
(number of devices and types need to be known). Potentially it might be useful to modify or even 
create parts of the network configuration by third party tools, which is possible and it is supported 
by the TTEthernet tools. 

The next step is to introduce the resulting XML file set into the TTEBuild Device Configuration 
Database tool. This tool generates one device configuration file per device planned in the target 
network (i.e. switch or end system). The TTEBuild Device Configuration Database tool provides its 
results both, in XML format and in binary code (different image formats, HEX or BIN can be 
selected) ready for direct download to the target device. The device configuration is 
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device/hardware specific and describes all configuration parameters at bit level. Fine-tuning of 
device parameters is possible at this level. 

In a next step, the binary code is downloaded to the switches in the network using the TTELoad 
tool. TTELoad connects to the management interface of the switch and provides a safe unlocking 
procedure before reprogramming the static configuration memory of the switch. It also supports 
bootstrap configurations of the TTEthernet switches. For the End-systems the information is loaded 
to them using the drivers included in the End-system delivery package. 

TTTech provides Eclipse plug-ins for TTEPlan and TTEBuild. With editors for all TTETool 
databases, as well as a schedule visualization feature, Eclipse then provides a convenient user 
interface for most TTETool use cases. Basic database validation and generation of validation 
reports is also possible using Eclipse. 

 

Figure 29: TTEthernet tools development suite 

At the last activity of “Software unit design and implementation” phase, the detailed design and its 
implementation are statically verified before proceeding to the software unit testing phase. To do 
this, inspection and walk-through may be conducted depending on critical nature of components. 
Formal inspection is a technical examination process during which a product is examined with the 
purpose of finding and removing defects. A defect is any occurrence in a software product (design, 
pseudo-code, code, comments, etc.) that is determined to be incomplete or incorrect with respect 
to software requirements and/or program standards. While walk-throughs is a form of software 
peer review "in which a designer or programmer leads members of the development team and 
other interested parties through a software product, and the participants ask questions and make 
comments about possible errors, violation of development standards, and other problems". 
Subsequently, the possible actions to take as a result of verification activities will be decided.  

 

 6-9 Software unit testing 

Software unit tests should be executed to verify that the software units fulfil the software unit 
design specifications and do not contain undesired functionality. To demonstrate that there is no 
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unintended functionality structural coverage metrics should be measured for safety relevant 
software units. 

In SafeAdapt, unit test cases are generated manually. However, according to the 26262 standard, 
Dynacar RT tool can be used as a test environment in order to execute both software-in-the-loop 
and hardware-in-the-loop tests. Instead of deploying separate environments to test different 
components of a vehicle and rebuilding and redeploying models, Dynacar RT delivers a common 
test platform that can be used through the whole powertrain design process, allowing rapid 
prototyping, implementation and real-time testing of ECUs and powertrain components since 
Dynacar RT supports an open architecture.  

Prior running the tests, the user should set up the test environment. This process includes three 
main steps: the configuration and implementation of the vehicle model, the definition of the test 
tracks and the configuration of the driving cases. 

a) Configuration and implementation of the vehicle model 

At the first step, in order to determine the vehicle dynamics behaviour in a driving situation the 
vehicle model should be adjusted to the vehicle real parameters. By default, there are 10 vehicle 
configurations in Dynacar RT which can run the tests, but the parameters of any vehicle can be 
changed.  

In Figure 30, the user selects and updates the car skin. 

 

 

Figure 30: Real vehicle 3D visualization in Dynacar RT 

Once the base model of the vehicle is loaded, the detailed vehicle setup can be completed through 
the definition of domain parameters such as: body (mass, GOG, wheelbase, track, etc.), 
aerodynamics, wheels, suspension & steering, powertrain and brake system. 
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Figure 31: Vehicle parameters definition in Dynacar RT 

To complete the vehicle model, the custom control algorithms and simulation models generated 
with other languages (Labview, Simulink, Dymola, Maplesim, C/C++, etc.) can be integrated 
directly into the base Dynacar RT vehicle model in dll format. In this way, engineers can customize 
the model by changing parameters on the fly using the graphical user interface or by plugging in 
their own models. This feature allows carrying out software-in-the-loop tests as shown in Figure 32. 

 

Figure 32: External model integration and virtual ECU (SIL) in Dynacar RT 

On the other hand, it is possible to implement a hardware-in-the-loop testing environment by 
installing custom I/O hardware and its application. 

b) Definition of the test tracks 

At the second step, the test tracks can be accurately modelled using accurate terrain information 
and on site measurements. By default, 5 circuits are included such as, for instance, the test track 
at INTA facilities (Madrid, Spain) shown in Figure 33. However, with the Scenario Editor, users can 
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design and modify scenarios in several ways: importing csv file with X-Y-Z road data, importing gpx 
file with GPS data, importing Google maps route and adding fixed objects to the scenario. In 
addition, the vehicle start position within the circuit should be established. 

,. 

Figure 33: Accurate test track model in Dynacar RT 

c) Configuration of the driving cases 

At the third step, the driving tests should be configured. Dynacar RT allows to introduce different 
data from excel files.  In order to help user generating this data Dynacar RT provides several 
predefined excel templates grouped in the following concepts: autonomous cycle (speed vs time, 
height vs distance, height vs time). 

 

Figure 34: Example of test case input template in Dynacar RT 

In addition, other model inputs/outputs can be linked in case of being provided by another 
model/controller installed on the same HW or can be linked using any kind of communication 
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(CAN, FLEXRAY, PROFIBUS, A/D, Ethernet and so on). For instance, several outputs can be 
used as virtual sensors that can be connected to other software or models (SIL) or hardware (HIL). 

Once configuration is performed Dynacar RT is ready as a test environment. The simulation should 
be run in Dynacar RT in order to generate plausible vehicle behaviour data. At the first step, the 
user should choose the test type: with human driver or driverless just following driving cycles in 
autonomous mode. After that, by selecting the download project option, the simulation will start 
with the new parameters and the selected scenario. After the simulation a manual analysis of the 
readouts should be achieved by the user. These results can help developers to verify that the 
software fulfil the design specifications and do not contain undesired functionality. 

 

 6-10 Software integration and testing 

The scope is to integrate the software components and demonstrate that the software architecture 
is correctly realized. Integration levels are tested against the architectural design. 

To verify the software units, it is advisable to use an appropriate combination of the following 
verification mechanisms: 

 Mechanisms for error detection at software architectural level 

 Mechanisms for error handling at  software architectural level 

 Methods for the verification of the software architectural design 

In SafeAdapt, test cases are generated manually. However, according to the 26262 standard, 
Dynacar RT tool can be used as a test environment in order to execute both software-in-the-loop 
and hardware-in-the-loop tests. Depending on the scope of the tests and the hierarchical level of 
integration, Dynacar RT can be used in combination with the target processor for final integration, 
or a processor emulator or a development system for the previous integration steps. For a detailed 
explanation about the use of Dynacar RT, please, consult chapter “6-9 Software unit testing”. 

 

 6-11 Verification of software safety requirements 

The goal is to demonstrate that the embedded software fulfils the software safety requirements.  

According to the 26262 standard, this verification can be conducted with the support of Dynacar 
RT tool since it works as a "Virtual Rolling Chassis" concept (or test mule virtual car). This testing 
shall be executed on the target hardware. For a detailed explanation about the use of Dynacar RT, 
please, consult chapter “6-9 Software unit testing”. 

Moreover, composeR can be used as a verification method to confirm that all possible failure 
modes are covered by appropriate safety measures (as specified in the software technical safety 
concept). Hence composeR and FMEDAexpress (FMEA) are used to either identify or confirm the 
safety-related parts and it supports the specification and verification of the safety mechanisms to 
mitigate both random hardware and software faults e.g. diverse software design. 
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5.5 ASIL-oriented and safety-oriented analyses 

The current SafeAdapt project does not fully cover this part of the ISO 26262 standard. Only main 
chapters addressed by the project have been included. 

 

 9-7 Analysis of dependent failures 

Dependent failures are defined by ISO 26262 as failures whose probability of simultaneous or 
successive occurrence cannot be expressed as the simple product of the unconditional 
probabilities of each of them. Such dependent failures should be identified from the results of 
safety analyses and they can be classified as Common Cause Failure or Cascading Failure. 

As shown in the following figure, a Common Cause Initiator (CCI) exists and triggers the same or 
different systematic software faults (2 and 2’) in both SW elements, causing both to fail. The 
combination of the resulting failures leads to the violation of the safety goals. 

 

Figure 35: Common Cause Failure 

In the following figure a cascading failure is shown. In this example, a fault (1) on SW element 1 
leads to its failure. Due to insufficient fault containment on SW element 1 or insufficient 
independence of SW element 2 a coupling mechanism (2) exists, which leads to a failure of SW 
element 2. The combination of the two resulting (cascading) failures or the resulting (cascading) 
failure 2 leads to a violation of the safety goal (3). 

 

Figure 36: Cascading Failure 
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In SafeAdapt, the identification of dependent failures (systematic/random) can be supported by 
FMEA. Similar parts or components with similar failures modes that appear several times on 
composeR (FMEA) can give information about these types of failures. composeR (FTA) can help in 
this identification as well. Examination of cut sets or repeated identical events of a FTA can 
indicate potential for dependent failures. 

Any dependability related to robust design could not be evaluated by analysis of the architecture. 
The realized product, a simulation of the realized design or a model which is completely validated 
versus the design is compulsory. 

Typically the software elements that can be affected by common cause initiator are: 

 The redundant or diverse elements (e.g. resulting from an ASIL decomposition) 

 The software module and its safety mechanisms (e.g. software functional part and the 
watchdog) 

 The software functions using identical SW modules (e.g. libraries) 

 The software that rely on the same hardware or same input signal 

ISO 26262 gives a list of possible root causes for hardware and software dependent failures. The 
list can be reduced to the ones related to software: 

 Random hardware failures (e.g. CPU and memory structures) 

 Development faults (e.g. during software development process) 

 Installation faults (e.g. during configuration, integration) 

 Environmental factors (e.g. impact on input values, interrupts) 

 Failures of common internal and external resources (e.g. libraries) 

Based on the list, the possible CCI and software faults must be retrieved. 

In order to make a more systematic analysis about the possible CCI or software faults, the type of 
software properties that can be affected by the root causes is proposed: 

 Data 

 Control flow 

 Timing 

 Code and configuration 

 Shared HW resources 

Based on the matrix of root causes and affected software properties, a better systematic analysis 
of the possible CCI, software faults or the resulting failures can be done. 

As being the search for basic events that trigger multiple top events of a fault tree analysis, 
Common Cause Analysis is also possible in component fault tree analysis. The identification of 
common causes is drastically increased since all basic events and all top events are included 
within one single model. In contrast to that, common cause analysis can be complex in classic fault 
trees since a common cause can be in multiple separated trees. 
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 9-8 Safety analyses 

Safety Analyses examine the consequences of faults and failures on items considering their 
functions, behaviour and design. It also provides information on conditions and causes that could 
bring violations to a safety goal or requirement. Last, it could indicate new hazards not found 
during the hazard analysis and risk assessment.  

These are two most common techniques for analysing system fault modes: FMEA and FTA. The 
FMEA is an inductive (bottom up) approach focusing on the individual parts of the system, how 
they can fail and the impact of these failures on the system. FMEA starts from known causes and 
forecasting unknown effects while FTA is a deductive (top down) approach starting with the 
undesired system behaviour and determining the possible causes of this behaviour. FTA starts 
from known effects and pursues unknown causes. 

In other words, FMEA focuses on each system component and it examines before-the-fact all 
things that could possible go wrong with that component. While FTA focuses on failure outcome 
and it examines the applicable components, processes and conditions retroactively to identify all 
possible contributing factors that could have worked alone or in combination to cause the outcome. 
FMEA and FTA complement each other. FMEA yields the possible system failures, which are the 
inputs of FTA (Rolf, 2006). In practise, a FTA is performed for lager systems. When a problem is 
detected within a certain subsystem an FMEA on the smaller subsystem is performed to find out 
how it behaves. Figure 37 shows how the FMEA and the FTA complement each other. 

 

 

   (a)           (b) 

Figure 37: (a) FMEA and (b) FTA [3] 

Such methods could be classified as “Qualitative” or “Quantitative”. Qualitative analysis methods 
identify failures without predicting how often they occur. Qualitative FMEA at system, design or 
process level together with qualitative FTA are some of these techniques. As ISO 26262-6:2011 
depicts, this method could even be applied to software where no more appropriate software-
specific analysis methods exist. 
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On the contrary, quantitative analysis methods predict the frequency of failures as well. The 
quantitative analysis methods include quantitative FMEA and FTA. Software failures, as systematic 
failures, do not require quantitative analyses but only qualitative analyses. These types of methods 
mostly address random hardware failures. They are used to verify a hardware design against 
defined targets for the evaluation of the hardware architectural metrics and the evaluation of safety 
goal violations due to random hardware failures (see ISO 26262-5:2011). Quantitative safety 
analyses require additional knowledge of the quantitative failure rates of the hardware elements. 

Quantitative analysis, when dealing with HW random faults, is called FMEDA (Failure Mode Effect 
and Diagnostic Analysis). FMEDA permits to calculate the architectural metrics (Single Point Fault 
Metrics and Latent Fault Metrics) by introducing safety mechanisms with their diagnostic coverage 
(detection rate of the fault) stopping or mitigating the fault propagation as proposed in ISO 26262 
Part 5. 

In SafeAdapt there are two safety analysis tools: composeR (which performs FTA) and 
FMEDAexpress (which performs FMEDA analysis). Table 4 illustrates the tools capabilities 
addressing ISO 26262. 

 FME(D)A CFT 

Availability to perform 
qualitative and quantitative 

analysis 

FMEA: qualitative 

FMEDA: quantitative 

Both 

Addresses random failures YES: FMEDA YES 

Addresses systematic failures YES:FMEA Yes but low of interest 

Application to different 
architectural levels 

YES YES 

Used to calculate SPFM and 
LFM 

Yes FMEDA Not direct 

Support dependent failure 
analysis 

YES YES 

Analysis generated from 
models 

YES NO 

Table 4. Tool capabilities addressing ISO 26262 

Such safety analysis techniques are performed at the appropriate level of abstraction during the 
concept and product development phases of ISO 26262. If the analysis determined that a safety 
goal or requirements is not compliant with, such results should be used for deriving prevention or 
mitigation measures for the causes of the violation.  

Below the methodology to use these two safety analysis tools is given. 

FMEA Analysis with composeR 

Failure Modes and Effects Analysis (FMEA) (Sweeden, 2013) is a detailed bottom up inductive 
analysis of a system, subsystem, process, design or function so that potential failure modes, their 
causes and their effects can be identified. At the same time, it helps in the process of either 
controlling or avoiding the undesired effects of these failure modes. It focuses on the individual 
parts of the system, how they can fail and the impact of these failures on the system. Since this 
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bottom-up safety analysis method starts with a detailed list of all components within a system, their 
failure modes are identified and the analysis of their impact at higher levels is performed. Their 
effects at the highest system level are foreseen. 

The composeR tool allows an XML-based import of the component structure with arbitrary 
hierarchy. After the component structure is being imported, component fault tree analysis and 
FMEDA analysis can be performed. 

It usually consists of the following steps as shown in Figure 39. 

 

Figure 38: General FMEA analysis process 

At the final step, in composeR all relevant information is documented in a worksheet as shown in 
Table 5. 

 

 

Documentation

Tracing of the committed avoidance and recovering activities / Response plans and tracking

RPN calculation

Detection Rate

Determine the detection rating for each control mechanisms.

Preventive/Detection  actions

Put mechanisms in place to control the failure to happen

Occurrence Rate

Rank how likely this effect could occur

Failure Causes

Identify all the possible root causes of the failure

Severity Rate

Rate how severe the effects is

Failure Modes/Effects
Identify all the ways failure could happen for 

each function Identify all the effects of the failure

List the  key process steps.  Identification of functions (system/design/process level)

Review the design /process and identify the system components and its functions
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Table 5. General FMEA table 

Where 
 

a) Function: identify the functions of the scope by means of identifying the purpose of the 
system, design, process or service. The scope is usually divided into different 
subsystems, items, parts or process steps. 

b) Failure Mode: fill it with all the possible failure modes that may affect the considered 
function. It answers the question about what could go wrong. 

c) Failure Causes: define all the possible failure causes for each failure mode i.e. why 
would the failure happen? 

d) Failure Effects: determine all the consequences on the system, related systems, 
process, and related processes for each failure mode i.e. what would be the 
consequences of failure? 

e) Severity Rate (S): 1–10, 10 = most severe effect 

f) Preventive Actions/Detection Actions: for each cause, it identifies how to control them 
by means of either procedures or mechanisms in place. Specifically, the actions prevent 
the failure to happen, reduce the possible likelihood or detects the failure. 

g) Occurrence Rate (O): 1–10, 10 = very likely to occur  

h) Detection Rate (D): 1–10, 10 = very unlikely to detect  

i) Risk Priority Number (RPN): SxOxD 

j) Recommended Actions: design or process changes to make severity or occurrence 
lower. For instance, actions to reduce the hazard rate increase the potential of finding 
failures… 

In addition, this data is usually completed with useful information such as: controls to improve 
detection process, responsible person, deadlines, remarks, etc. 

Component Fault Tree Analysis with composeR 

FTA (Headquarters) is a top down, deductive failure analysis technique to evaluate the safety and 
reliability of a given system based on its architecture. It backwardly deduces the causes of a given 
event, discovering the root causes of failures. 

The composeR tool allows an XML-based import of the component structure with arbitrary 
hierarchy. After the component structure is being imported, component fault tree analysis and 
FMEDA analysis can be performed. 

During the whole development phase of safety-critical embedded systems the automation 
capabilities and the integration of dependability analyses into the design process can save great 

Item/Function  Failure 
Mode 

Failure 
Causes 

Failure 
Effects 

Severity 
Rate(S) 

Occurrence 
Rate(O) 

Detection 
Rate (D) 

Preventive 
Actions/ 
Detection 
Actions 

RPN  Recommended
Actions 
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effort and therefore also money. This is the reason why it is becoming a significant concern within 
the design community.  

Model safety analysis allows an early safety assessment in the system design process. Methods 
such as Fault Tree Analysis or FMEA tables can be automatically generated, rather than creating 
them manually as it has been performed so far (A. Joshi, 2005) . Model-driven safety analyses are 
applied in the architecture design phase and this automation is based on an architecture design 
specification together with the specification of the failure behaviour of architectural components. 
Hence, both system level faults and design architecture itself need to be modelled together, 
extending the model with faults and failure modes. These faults can be classified as 
transient/permanent, non-deterministic/inverted/stuck-at, based on its fault propagations or 
dependency of faults, fault hierarchies i.e. failure mode of a component as a function of its 
subcomponent, digital faults (HW/SW), etc. The modelling of error propagation, error masking and 
filtering is carried out in such a way that the inheritance of these rules from hierarchical 
components is automatically achieved (Ana Rugina, 2007). Moreover the automatic generation of 
safety analysis from design artefacts is not directly possible. 

These abstract models assist analysts in understanding in a better way how the faults are 
propagated through the different components of the embedded architecture and eventually cause 
hazardous effects at system level. 

As it has been previously affirmed, there are currently commercial tools in the market addressing 
the assistance of performing tables and filling data. Yet the intelligent part of accomplishing either a 
FMEA or FTA stays quite manual and time-consuming.  

Among the different model based safety analysis techniques, Siemens composeR  ESSaReL (The 
ESSarel research project & tool) based tool comprises different analysis models. Even if ESSaReL 
approves Markov chains and State charts as well, these two safety analyses methods are out of 
scope in SafeAdapt project. Consequently only Component Fault Trees and State Event Fault 
Trees will be explained. 

a) Component fault trees (CFT) 

This method consists of modifying the classical fault tree into an extended one i.e. a modular 
version of traditional fault trees is proposed. In other words, independent sub-trees are considered 
as modules being the main goal the generation of fault trees for different system components in 
order to combine these ones afterwards to get the results for the system. It is important to point out 
that many components have the same probability distribution (Weibull, Exponential, etc.) and 
parameters are modelled only once. 

CFTs are classified and can be instantiated in different projects. The analysis is conducted at 
architectural level, constructing a system level CFT based on the previous defined architectural 
specifications. Besides all the architecture elements are commented with low-level CFTs. 

One of the main differences compared to the traditional fault tree is the appearance of two new 
symbols. Additionally, each component can have input and output ports. These new symbols are 
the basis to make an interconnection between components and higher-system levels.  

Fault Tree Gates, the ones from traditional FTA together with input and output ports are shown in 
Table 6. 
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Gate 
CFT Symbol 
(IEC 61025) 

Description 

AND 

 
The output event occurs if all input 
event occur 

OR 
 

The output event occurs if at least 
one of the input events occurs 

Voter gate 

 
The output event occurs if k or more 
of the input events occur 

Input failure ports 
(Causal Inport) 

 
Describe possible points for failure 
propagation 

Output failure 
ports (Causal 
Outport) 

 
Describe possible points for failure 
propagation 

Internal fault 
events 

 
Similar to basic events 

XOR gate 

 The input event occurs if all input 
events occur and an additional 
conditional event occurs 

NOT gate 
 The output event occurs if the 

contrary of the input occurs 

Causal Edge 
 

Connection edge 

Table 6. Symbols for CFT 

Figure 39 presents an example of a CFT. 

 

Figure 39: CFT example 

The information regarding a component can be developed independently and stored into a XML 
library. 

& 

>=1

k:n 

=1 

Not
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Still both quantitative and qualitative analysis can be carried out whereby CFT and Binary Decision 
Diagram (BDD) concept can be applied as well. Qualitative analyses determine which 
combinations of failure need to happen simultaneously so that the top event is caused. On the 
other hand, quantitative ones compute the global probability of failure of the top event calculating it 
from the basic events up to the top. 

CFT used in ESSaReL supports graphical specification and efficient evaluation of CFTs via 
probabilistic evaluation and minimal cut set analysis.  Another feature is the feasibility of defining a 
partial fault tree for each output failure port; whereas CFT can be appraised as a function of the 
input ports and the internal fault events. 

Two of the most important advantages of this automatic method are that repeated events are 
represented only once and the “Cause and Effect Graphs” can contain several top-events which is 
not possible at all in the classical fault trees. Having several top events allow the examination of 
several failure modes and their influence at a time. As stated before, the top event probability is 
calculated by the standard algorithms. 

 

Figure 40: Two top-events (B. Kaiser, 2003) 

In the same way traditional fault trees are extended into CFTs, FTs could be extended into 
SaveCCM models (Grunske, 2006) (M. Kerholm, 2007). 

Thanks to this extended mode, fault tree generation is not anymore manually generated, allowing 
saving large quantities of time, money and effort. Furthermore the possible failure propagation 
between different components and their dependencies are examined. Considering their names and 
types, input and output failure ports are matched as well.  

In short, the main features of the proposed CFT method are detailed below (Han, 2008 ). 
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Method Fundamental 
Modelling 
Formalism 

Graphical/Textual 
Modelling 

Reuse of 
Safety 
Evaluation 
Annotations 

Modelling of 
Architectural 
Dependencies 

Masking, 
Filtering, and 
Renaming of 
Error/Failure 
Propagation 

Modelling of 
Interaction 
Between 
Errors and 
Operational 
Modes 

CFT Purely-
Event-Based 

Graphical 
modelling 
(models are 
saved in a XML 
based 
representation) 

CFTs are 
error types 
and can be 
instantiated 
multiple times

Should be 
specified in 
the 
underlying 
architectural 
model 

Extra 
modelling for 

masking, 
filtering and 
renaming 
required 

Supported 
only by a 
recent 
extension of 
CFTs 

Table 7. CFT modelling support architecture-based 

Method Identification and 
Specification of 
Hazard Conditions & 
Safety Requirements 

Architecture 
Specification 
including 
Architectural 
Dependencies 

Identification of 
an Error Model of 
a Basic 
Architectural 
Components 

Generation of ErrorModels for 
Hierarchical Components 

CFT Hazard conditions 
can be identified 
with SHARD and 
specified directly in 
the CFT formalism 

General purpose 
language, limited 
support for 
architectural 
modelling in ROOM 
and SaveCCM 

Based on 
SHARD & IF-
FMEA 

Generation of hierarchical 
CFTs based on name matching 
of incoming and outgoing 
failure ports with limited 
support of architectural 
dependencies (currently 
communication connection 
only) 

Table 8. CFT process support of architecture-based safety evaluation 

Method Tool Description Automatic Support 
for the Generation 
of Error Models of 
Hierarchical 
Components 

Probabilistic 
Model Analysis 
(Tool Back-end) 
 

Generation of 
Standard Fault 
Trees 

Generation of 
FMEA tables 

 

CFT UWG3 & 
ESSaReL 
(Windows-
based with 
drag and drop 
GUI) 

Manual tool 
guided 
generation of 
error models for 
hierarchical 
components 

Probabilistic 
evaluation by 
translation of 
the CFTs into 
BDD 

Automatic 
flattening of 
CFTs to 
standard fault 
trees 

Currently not 
supported, 
however FMEA 
table generation 
similar to should 
be possible 

Table 9. CFT support of architecture-based safety evaluation 

A component fault tree is a Boolean model associated to system development elements such as 
components. It has the same expressive power as classic fault trees. As classic fault trees, also 
component fault trees are used to model failure behaviour of safety critical systems. This failure 
behaviour is used to document that a system is safe and can also be used to identify drawbacks of 
the design of a system. 

A separate component fault tree element is related to a component. Failures that are visible at the 
outport of a component are models using Output Failure Modes which are related to the specific 
outport. To model how specific failures propagate from an inport of a component to the outport, 
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Input Failure Modes are used. The inner failure behaviour that also influences the output failure 
modes is modelled using the gates NOT, AND, OR, and Basic Event.  

Every component fault tree can be transformed to a classic fault tree by removing the input and 
output failure modes elements. Figure 41 (a) shows a classic fault tree and Figure 41 (b) a 
component fault tree. In both trees, the top events or output events TE1 and TE2 are modelled. 
The component fault tree model allows, additionally to the Boolean formulae that are also modelled 
within the classic fault tree, to associate the specific top events to the corresponding ports where 
these failures can appear. Top event TE1 for example appears at port O1. Using this methodology 
of components also within fault tree models, benefits during the development can be observed, for 
example an increased maintainability of the safety analysis model (Jessica Jung, 2013). 

 

Figure 41: Example of a system FTA with composeR. (a) Classic Fault Tree and (b) Component 
Fault Tree. For more information, please see (Jung, J.; Hoefig, K.; Domis, D.; Jedlitschka, A.; 

Hiller, M., Oct 2013). 

FMEDA Analysis with FMEDAexpress 

Figure 42 shows a screenshot of a tool implementing the FMEDA methodology. This tool allows 
splitting up the analyzed system into assemblies. Each assembly holds a certain set of parts to be 
analyzed. Each part has a list of associated failure modes, effects and measures. The failure 
modes come from a part list which contains parts and their failure modes. Every time the part is 
used in an assembly, a new instance of that part is generated. If the failure modes of a part are 
altered, the changes are automatically distributed to all references where the part is implemented. 
The effects of a failure mode can also be reused. Once initiated, an existing failure mode can be 
selected via a drop-down menu and associated to another failure mode. The same mechanism is 
available for the measures. Furthermore, local effects are supplied as a textual field to add a 
reason for the reuse of an effect. Another feature that is not available in classic FMEDA analyzes is 
to color code a failure mode. Here we used the classifications done, in progress and critical to 
mark failure modes as already analyzed, to be investigated further, e.g., by performing test, and as 
critical if redesign is required. For further information, please take a look at (Höfig, 2014) and 
(Reliability Engineering Resource Website). 

As previously stated, this tool enables the calculation of hardware architectural metrics required by 
ISO 26262-5:2011. 
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Figure 42: Screenshot of the FMEDAexpress interface 
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6 Examples of Tool Chain Use  

In this section, the most common ways of using the SafeAdapt methodology by industry are 
presented. 

6.1 Model-to-code approach 

This paragraph outlines how to use the SafeAdapt toolchain in order to generate the system code 
thanks to the model transformation mechanisms. Figure 43 shows the collaboration of tools in the 
context of code generation. 

 

Figure 43: Tool chain with focus on code generation 

The starting point is the UML/EAST-ADL model. The Qompass model transformations can add so-
called containers: additional composite classes that encapsulate the original components and can 
provide additional services, notably reflective data. 

From this model, Papyrus export utility can be used to produce an AUTOSAR model, notably a 
model using the ARTOP XML format. This model might need manual refinement, and then target 
code can be produced using an AUTOSAR implementation like Arctic Studio. In the context of 
SafeAdapt, several components are implemented using MATLAB Simulink and MathWorks tools 
can produce resulting C code 
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6.2 Model-to-simulation approach 

This paragraph outlines how to use the SafeAdapt toolchain in order to simulate and analyse the 
behaviour of the system model, as shown in Figure 44. Simulation enables the designer to 
quantitatively assess deployment and reconfiguration strategies. There are two simulation tools, 
UNISIM-VP and ERNEST.  

UNISIM-VP can simulate a vehicle distributed computing system including ECUs and networks 
(CAN, LIN, FlexRay, etc.). UNISIM-VP simulator provides instrumentation capabilities and 
hardware fault injection mechanisms (ECU, memory, interconnects and peripherals). The 
simulation employs the same binary code that is also used for target hardware. Thus, code is 
produced in the same way as described in the previous paragraph (since the currently chosen 
processors for the demonstrators are not supported yet, the code needs to be recompiled for a 
processor architecture supported by UNISIM-VP). Besides the code, a scenario and platform 
descriptions are inputs for the simulation. The scenario drives simulation that produces an 
execution trace. The scenario could contain different fault conditions (e.g. ECU not responding, 
sensor defect, transient failure). These faults can be for instance produced in a specific memory 
region or CAN messages. Simulation can serve to validate the software and reconfiguration 
strategy in terms of time (deadline, reconfiguration delay, bandwidth and data traffic) and memory 
space. In comparison to the demonstrators, the simulated distributed system may contain more 
than two ECUs and thus enabling more complex (failure) scenarios. 

In case of ERNEST, a different code is generated from the System model (partly SystemC) which 
is then simulated at a higher level of abstraction. Compared to UNISIM-VP, simulation results are 
obtained more quickly but reflect less platform details. 

In both cases, the results have an impact on the original system model, which gets updated in 
order to make a new iteration of the process. 
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Figure 44: Tool chain with focus on simulation 

6.3 Risk analysis approach 

This paragraph outlines how to use SafeAdapt in order to fully address ISO 26262 throughout the 
system lifecycle (specification, design and implementation phases). Figure 45 shows the tool chain 
with a focus on this lifecycle. The generated code, including for instance the MATLAB components 
is used for a Dynacar integration test. The test results are available in form of an XML file with 
additional data. FMEA express (optionally FMEDAexpress) and composeR can be used to create 
an FMEA analysis report from this data. The report is then used to update the EAST-ADL model 
and the MATLAB component. 
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Figure 45: Tool chain with focus on safety-analysis tools 
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7 Conclusions 

In this document, the processes and tools that are used within the SafeAdapt project have been 
shown. There is a focus on the verification and validation aspects for safe adaptive embedded 
systems, since these are of particular importance for the certifiability of adaptive embedded 
systems. In the context of the automotive domain the international ISO standard 26262 must be 
respected, enabling the more efficient creation of safety-critical systems. 

Three representative exploitations of the tool chain have been shown, namely code generation for 
target, code generation for simulation and safety/risk analysis. 

Several existing tools, partly provided by the partners of SafeAdapt need to collaborate to achieve 
this goal. The use of well accepted international standards, namely UML/SysML, EAST-ADL, 
MARTE, ARText and AUTOSAR mitigates interoperability problems. However, the used tools have 
different input and output data format and gateways are needed to render them compatible. While 
we will provide some gateways (for instance from the central UML/EAST-ADL architecture model 
to AUTOSAR), the focus of SafeAdapt project is not on tool integration. Therefore, the data for 
some tool will be converted manually as a proof-of-concept for their conceptual interoperability. 
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List of abbreviations 

Abbreviation Definition 

ASIL Automotive Safety Integrity Level 

AUTOSAR Automotive Open System Architecture 

CSD UML Composite Structure Diagram 

CFT Component Fault Tree 

DC Diagnostic Coverage 

EAST-ADL Electronics Architecture and Software Technology - Architecture 
Description Language 

E/E Electrical or/and Electronics 

ECU Electronic Control Unit 

FCM Federation Conceptual Model 

FIT Failures In Time 

FMEA Failure Mode and Effects Analysis 

FMEDA Failure Modes, Effects and Diagnostic Analysis 

FPGA Field-Programmable Gate Array 

FTA Fault Tree Analysis 

HARA Hazard Analysis and Risk Assessment 

HIL  Hardware-in-the-Loop 

HW Hardware 

LFM Latent-fault metric 

MARTE Modelling and Analysis of Real-Time and Embedded systems 

MIL Model-In-the-Loop 

PMHF Probabilistic Metric for random Hardware Failures 

SIL Software–In-the-Loop 

SPFM Single-point fault metric 

SW Software 

SysML System Modelling Language 

TADL Timing Augmented Description Language 

UML Unified Modelling Language 

V&V Verification & Validation 
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XMI XML Metadata Interchange 

XML eXtensible Markup Language 

 


