

Project acronym: SafeAdapt

Project title: Safe Adaptive Software for Fully Electric
Vehicles

Grant Agreement number: 608945

Coordinator: Dr.-Ing. Dirk Eilers

Funding Scheme: FP7-2013-ICT-GC

Deliverable 5.3

Evaluation Results of the specified Use Cases and
Scenarios

Due date of deliverable: 30.06.2016

Actual submission Date: 30.06.2016

Lead beneficiary for this deliverable: Duracar

Dissemination level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

The research leading to these results has received funding from the European Community's Seventh
Framework Programme (FP7/2007-2013)

This document contains information which is proprietary to the members of the SafeAdapt consortium.
Neither this document nor the information contained herein shall be used, duplicated or communicated by
any means to any third party, in whole or in parts, except with prior written consent of the members of the

SafeAdapt consortium.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Document Information

Title Evaluation Results of the Specified Use Cases and Scenarios

Creator Duracar: Ken Lam

Description The document contains a detailed description of the evaluation of
the SafeAdapt results of the specified use cases and scenarios
according to the evaluation methodologies described in D5.1. The
improvements and advantages/disadvantages gained by
SafeAdapt are shown in this deliverable.

Publisher Members of the SafeAdapt Consortium

Contributors Fraunhofer: Philipp Schleiss, Christian Drabek, Gereon Weiss

TTTech: Andreas Eckel

Ficosa: Andrea Saccagno

Tecnalia: Garazi Juez, Alejandra Ruiz, Mª Carmen Palacios, Maite
Alvarez, Maite Alvarez, Josu Albizu

CEA: Ansgar Rademacher, Mahmoud Hussein

Siemens: Cornel Klein, Jan Sawallisch, Andre Marek, Marc Zeller

Pininfarina: Sandro Morero

Duracar: Ken Lam

Delphi: Thorsten Rosenthal

Language en-GB

Creation date 27.01.2016

Version number 1.0

Version date 30.06.2016

Audience internal

 public

 restricted

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Table of Contents
List of Figures 4
List of Tables 6
Executive Summary 7
1 Introduction 8
2 Goals 9
3 Evaluation of Technical Feasibility 10

3.1 Demonstrator Platforms 10
3.2 Full-Scale E-Vehicle Prototype 11

3.2.1 Platform Description 11
3.2.2 Failure of Single Application 14
3.2.3 Failure of Core Node 14
3.2.4 Failure of Power Source 15
3.2.5 Use Case concerned with Plug’n’Play and HW/SW-Updates 16

3.3 Dynacar Demonstrator 19

3.3.1 Platform Description 19
3.3.2 Use Case concerned with Maximal Failover Times 21
3.3.3 Use Case concerned with Energy Management 25

3.4 Frozen-Standby Demonstrator 27

3.4.1 Platform Description 27
3.4.2 Evaluation of Failover Times 28

3.5 Fail-Operational AUTOSAR Demonstrator 29

4 Evaluation of Development Process 33

4.1 Tool-Chain 33

4.1.1 Modelling Adaptive Vehicle Software Systems 33
4.1.2 Simulation 37
4.1.3 Generating AUTOSAR Models form EAST-ADL Model 40
4.1.4 Generation of Configuration File for the Adaptation Core 42

4.2 Unanticipated Behaviour 43
4.3 SAPC development according to ISO 26262 44

5 Evaluation of Efficiency 48

5.1 Basics for the Evaluation 48
5.2 Fail-Operational Architecture Overview 50
5.3 MR1: Optimised Energy Consumption 52
5.4 MR2: Failures Handled by Adaptation 54
5.5 MR3: Cost Reduction 56
5.6 MR4: Reduced Certification Cost 57

5.6.1 Reusable System Architecture Perspective 57
5.6.2 Tool Qualification Effort 59
5.6.3 Safety Goal Verification Effort 60
5.6.4 Functional Safety Management Effort 61

5.7 MR5: Reduced Complexity 62
5.8 MR6: Improved Redundancy Concept 63

6 Summary 64
Bibliography 65
List of Abbreviations 67

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

List of Figures
Figure 1: SafeAdapt car with components TMDP (black), RACE DCC (silver), and switches (blue)
 .. 11
Figure 2: Ring topology (top: original layout; bottom: improved SafeAdapt architecture) 12
Figure 3: Test system for monitoring all components ... 13
Figure 4: Health Vector monitoring system ... 13
Figure 5: Failure of “red” and “blue” power source ... 15
Figure 6: SafeCar demonstrator platform (see Deliverable D5.1) ... 16
Figure 7: Component Fault Tree Analysis tool composR ... 17
Figure 8: Compositional, model-based development strategy (UC_211_01) 17
Table 9: Results of the quantitative CFT-based FTA for the SafeCar (UC_211_01) 18
Table 10: Quantitative CFT-based FTA for the SafeCar (UC_311_01) .. 19
Figure 11: Driver-in-the-Loop Simulator .. 20
Figure 12: SafeAdapt use case monitor interface ... 20
Figure 13: Steps followed for test case scenario definition ... 21
Figure 14: Vehicle approaching cones that represent the road intersection for the fault trigger 22
Figure 15: Driver distribution by gender and age in Spain (Source: Dirección General de Tráfico) 23
Figure 16: Dynacar TE1, faults are clearly visible as “hole” (left) or “flat” (right) 24
Figure 17: Dynacar TE2, with multiple faults, more visible faults on right plot 24
Figure 18: Energy consumption test for range extension evaluation (UC_511_01) 25
Figure 19: Frozen-Standby demonstrator ... 27
Figure 20: Frozen-Standby demonstrator: Two ECUs, Hermes Switch and two beaglebones 28
Figure 21: Fail-Operation AUTOSAR demonstrator ... 30
Figure 22: AUTOSAR workflow .. 31
Figure 23: SafeAdapt tools overview .. 33
Figure 24: Design model for the vehicle system’s functionality .. 34
Figure 25: Design model for the system’s hardware architecture ... 34
Figure 26: Example timing requirements in an adaptive vehicle system .. 35
Figure 27: Specifying the adaptation triggers and the system response to that trigger 36
Figure 28: Adaptive behaviour for the vehicle software system .. 36
Figure 29: SafeAdapt plugin to generate “C” code from the design models 37
Figure 30: The generated C project that can run on the UniSim simulator 38
Figure 31: Executing the generated C project on the UniSim simulator ... 38
Figure 32: Executing the specified adaptation scenarios .. 39
Figure 33: Injecting faults to the running software .. 39
Figure 34: The system application in the AUTOSAR model ... 41
Figure 35: The internal functions of an application in the AUTOSAR model 41
Figure 36: The hardware platform in the AUTOSAR model .. 41
Figure 37: The mapping of the software components to the hardware elements 42
Figure 38: Generation of configuration file for SAPC adaptation core .. 42
Figure 39: Finding an allocation for an anticipated system configuration 43
Figure 40: SAPC component development from ISO 26262 .. 44
Figure 41: Excerpt of the ISO 26262 standard model ... 45
Figure 42: SAPC Safety Case Architecture .. 46
Figure 43: Dimensions of a “production ready” TMDP .. 48
Figure 44: Weight of a “production ready” TMDP ... 49
Figure 45: Typical front body computer (size: 26.2 * 18.9 cm = 495cm2, weight: 790gr.) 49
Figure 46: Updated block diagram of fail-operation architecture without SafeAdapt 50
Figure 47: Block diagram of fail-operation architecture with SafeAdapt ... 51
Figure 48: Braking force limits applied on the frontal and rear axle of the vehicle 53

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 49: State-of-the-art fail-operational wiring harness layout ... 56
Figure 50: Reduced wiring harness layout .. 56
Figure 51: IMA enclosure + 1st application ... 58
Figure 52: Each additional application .. 58
Figure 53 Estimations of SAPC architecture cost per application included 59
Figure 54: Relation of activities and work products .. 62
Figure 55: Measurable improvements of SafeAdapt compared to state-of-the-art 63

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

List of Tables
Table 1: Mapping of use cases to demonstrators ... 10
Table 2: Instance ID of applications .. 11
Table 3: Normal system mode .. 14
Table 4: Failure of Steer-by-Wire on RACE DCC ... 14
Table 5: Failure of ECU .. 15
Table 6: Mean driver safety perception ... 23
Table 7: States of SomnoAlert .. 26
Table 8: Trace of Frozen-Standby demonstrator .. 29
Table 9: Validation of safety assumptions .. 47
Table 10: Properties of a system with SafeAdapt (bold) and state-of-the-art system (in brackets) 52
Table 11: Vehicle energy efficiency with adaptation ... 54
Table 12: Error handling strategy at system level ... 55
Table 13: ASIL overhead .. 57
Table 14: Number of activities and work products in terms of SafeAdapt (ISO 26262) 61
Table 15: Number of activities and work products supported by SafeAdapt tools (ISO 26262) 61
Table 16: Categories of complexity reduction ... 62

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Executive Summary
The focus of this document is to evaluate the results of the SafeAdapt project with respect to
advantages and disadvantages of the proposed methods. For this, the results of the project are
first evaluated for general feasibility and then further assessed based on measurable indicators.
These measurable results were initially described in the Description of Work (DoW) and then
further outlined in Deliverable 5.1, which explained the methods used to attain these figures.

The evaluation in this document clearly shows that SafeAdapt’s concept for an adaptive E/E-
architecture is a viable option for future vehicles in general, and is moreover applicable for highly
safety-critical functions. In addition, the measured results highlight significant performance
improvements with respect to weight, cost, complexity, redundancy, amount of handled failures,
certification effort, and energy efficiency.

In sum, SafeAdapt’s adaptive and fail-operation E/E-architecture outperforms current state-of-the-
art technology in all categories of interest, and thus, provides a sound foundation for the future
development of safe and efficient vehicles, especially with regard to fully electric and autonomous
cars.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

1 Introduction
At the early stage of this project, the use cases and requirements and their specific scenarios had
been defined for the safe adaptation of safety-relevant systems in Fully Electric Vehicles (FEVs).
Subsequently, the development, the design, the support tool chain, and the implementation of the
Safe Adaptation Platform Core (SAPC), which enforces the safe adaptation of networked
embedded systems in FEVs, were realised. In order to examine the SafeAdapt approach in an
objective way, the evaluation methods were defined in detail before implementing the prototypes in
Deliverable D5.1 [1]. These methods in turn, were also mapped onto use cases and scenarios
defined during the requirement engineering phase of the project, previously documented in
Deliverable D2.1 [2].

Based on these use cases, different prototypes, such as a full-scale electric prototype vehicle,
scale-model vehicle, and driver-in-the-loop simulators, were chosen to demonstrate the main
aspect each use case intends to address. In sum, these aspects reach from proving runtime-
efficient fail-operational E/E-architectures up to energy optimisation topics.

The main subject of this deliverable is the evaluation of the SafeAdapt results. In order to exploit
these results, the evaluation of both, the viability and the efficiency, of the SafeAdapt approach
have to be taken into account. As a starting point, the overall goals of the project are summarized
in Chapter 2. In Chapter 3, the viability of SafeAdapt is regarded. This involves an overview of the
prototypes developed during the project and the corresponding use cases. Chapter 4 evaluates the
supporting tools and development processes. The content of Chapter 5 is the evaluation of the
efficiency of SafeAdapt. Therein, the measurable results such as energy consumption, cost
reduction, or reduced complexity are examined. Finally, the last chapter contains the summary and
conclusion of this document.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

2 Goals
The goal of this document is to provide an evaluation of the SafeAdapt project’s results. The
evaluation is an integral part of the project plan of SafeAdapt. Therefore the evaluation methods
have been well defined in D5.1 [1]. As the project goals are the guideline for the evaluation, they
are summarised here in short.

The project is driven by both, use cases and predefined targets, with respect to enhanced safety
and reductions in complexity as well as unit and development cost. Consequently, the goals are
also two-fold:

The first part of the documents shows the SafeAdapt approach is viable and can be used to fulfil
the functional aspects of the project’s objectives, i.e., the approach is effective:

 Objective #1: Provide novel architecture concepts to enhance robustness, availability, and
efficiency of safety-relevant systems while preserving the functional safety in FEVs

 Objective #2: Increase safety and availability through the ability to handle complex failures,
especially failures where current systems do not degrade gracefully

 Objective #3: Reduced bill of material by reducing the number of ECUs by providing a
generic failure management based on the SafeAdapt Platform Core

 Objective #4: Reduced development costs (time-to-market & testing costs) in future FEVs
by providing a generic failure management and software update mechanism (dealer retrofit)
based on a SafeAdapt Platform Core

 Objective #5: Increased energy efficiency in automotive E/E-architectures

The second part evaluates if the effort required to use SafeAdapt’s approach is manageable and
can even reduce the effort compared to other approaches, i.e., the approach is efficient. This will
be evaluated by comparison of the following measurable results (MR):

 MR1: Optimise energy consumption of safety-relevant features by up to 30%

 MR2: Handle 20-30% of failures in safety-relevant systems by adaptation or reconfiguration

 MR3: Reduce development and testing costs by up to 20%

 MR4: Reduce certification cost by up to 20%

 MR5: Reduce complexity and hardware cost of safety-relevant systems by up to 20%

 MR6: Improve current redundancy concepts (duplication of ECUs) by 50%
(require less extra ECUs while meeting the redundancy concept requirements)

With this two-fold evaluation it is targeted to show that SafeAdapt’s approach for safe adaptation is
both viable and efficient.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

3 Evaluation of Technical Feasibility

3.1 Demonstrator Platforms

As described in Deliverable D5.1 [1], SafeAdapt utilised multiple demonstrators to showcase the
viability of handling different types of use cases (see D2.1 [2]) in a safe and efficient manner. The
following Table 1 provides a brief mapping between these use cases and the demonstrator
prototypes. In addition, the key characteristics of each use case are carved out, thereby, describing
a set of use cases that can be handled by the same SafeAdapt mechanism.

Use Case Demonstrator Key Characteristics

UC_110_01: Reconfiguration
of Failed Cruise Control

AUTOSAR
Demonstrator

Backup instances is provided in cold-standby
manner, allowing high resource efficiency

UC_111_01: Steer-by-Wire
Adaptation after ECU-Failure

RACE &
AUTOSAR

Demonstrator

Failure of a single Core Node does not affect
the safety of the system

UC_114_01: Adaptation after
Brake-by-Wire Malfunction

RACE &
Frozen-
Standby

Demonstrator
& AUTOSAR
Demonstrator

As resources are limited after a failure, the
system uses graceful degradation to keep all
functionalities with fail-operational requirements
active

UC_116_01: Communication
Failure with External
Aggregate

RACE
A single failure of a communication link does
not affect the safety of the vehicle

UC_211_01: Installation of
New Component

RACE
(SafeCar)

The system is able to revaluate its dependability
whenever its hardware architecture changes

UC_311_01: Update of
Function

RACE
(SafeCar)

The system can revaluate if its safety
requirements are still met when software is
exchanged

UC_411_01, Degradation of
Steer-by-Wire Application

Dynacar

The failover time of a functionality must remain
within the limits given by physical properties of
the respective functionality (e.g., the maximal
time span the steering is allowed to not be under
control without affecting the performance of
driving)

UC_511_01, Adaptation for
Range Extension

Dynacar
The system is capable of adapting functionality to
improve energy efficiency

Table 1: Mapping of use cases to demonstrators

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

3.2 Full-Scale E-Vehicle Prototype

3.2.1 Platform Description

For evaluation of the SafeAdapt results, the RACE car (i.e., the SafeAdapt full-scale e-vehicle
prototype) was used as already described in Deliverable D5.1 [1], in Chapter 3.2. The goal of this
demonstrator is to prove the feasibility of SafeAdapt’s safety concepts in a full-scale electric
vehicle, with special focus on guaranteeing the availability of a highly critical driving functionality.

Figure 1: SafeAdapt car with components TMDP (black), RACE DCC (silver), and switches (blue)

Figure 1 shows the car with corresponding adaptations. For demonstrating the fail-operational
capabilities of the advanced SafeAdapt architecture, the Steer-by-Wire functionality was chosen,
as it requires fail-operational behaviour. For this, the e-vehicle is hoisted with a hydraulic lift in the
laboratory garage to allow the wheels to move freely. Moreover, the system also hosts a fail-
operational Brake-by-Wire and a non-critical SomnoAlert application, with the application
deployment and IDs of each instance depicted below in Table 2:

TMDP RACE DCC
1st application with ID “1”:

Steer-by-Wire
1st application with ID “4”:

Steer-by-Wire
2nd application with ID “2”:

Brake-by-Wire
2nd application with ID “5”:

Brake-by-Wire
3rd application with ID “3”:

SomnoAlert

Table 2: Instance ID of applications

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 2: Ring topology (top: original layout; bottom: improved SafeAdapt architecture)

Figure 2 depicts the topology of the main aggregates. The outer ring with gateways (sensors and
actuators) was not further modified. The inner ring was originally designed with three RACE DCCs
for the former RACE demonstrator car. This part was upgraded with a combination of a TMDP and
a RACE DCC, with additional Time-Triggered Ethernet switches.

To monitor and manipulate all components in the architecture separately, a test system was used
(see Figure 3). Here, especially the continuous steering wheel motion („SteeringWheel - Istwert“)
and the resulting correction of wheel angle at the steering box („SteeringBox - Sollwert“) proved the
complete data flow from sensor via application and the Core Nodes (CCC) to an actor (see bottom
part of Figure 3). Moreover, a systematic set of fault injection test cases were performed with this
tooling. The impact of application failure, Core Node failure, and power failure tests are described
in the following.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 3: Test system for monitoring all components

In addition, the Health Vector exchanged between the Core Nodes can also be monitored, to trace
each ECU state and verify that the required adaptations were performed correctly after a failure
has been injected. Figure 4 shows this monitoring solution, which allows the identification of the
Core Node, the state of adaptation, and each application’s individual mode of operation.

Figure 4: Health Vector monitoring system

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

During normal mode of operation, both ECUs are operating in an adaptation mode with ID 50
(“adaptID”). In this system mode, the TMDP is configured to supply the SomnoAlert functionality
whereas the RACE DCC provides Steer- and Brake-by-Wire functionality, as shown below:

TMDP RACE DCC
appID “1”: Steer-by-Wire

HOTSTANDBY
appID “4”: Steer-by-Wire

ACTIVE
appID “2”: Brake-by-Wire

COLDSTANDBY
appID “5”: Brake-by-Wire

ACTIVE
appID “3”: SomnoAlert

ACTIVE

Adaptation ID “50”
Table 3: Normal system mode

3.2.2 Failure of Single Application

To simulate the failure of a single application, the test system was used to manipulate the
operating state of the Steer-by-Wire (SbW) application through the RTE (Runtime Environment) of
the RACE DCC, thus, passivating the application. This simulated failure of the application is then
automatically communicated through the Health Vector to the TMDP platform and to the monitoring
system. As soon as the SAPC algorithm is executed again, both platforms simultaneously
transition into a new mode, forcing the TMDP to take over the control of the SbW application and
thus, compensating for the application’s failure. The new operating mode is displayed below in
Table 4:

TMDP RACE DCC
appID “1”: Steer-by-Wire

ACTIVE
appID “4”: Steer-by-Wire

DEACTIVATED
appID “2”: Brake-by-Wire

COLDSTANDBY
appID “5”: Brake-by-Wire

ACTIVE
appID “3”: SomnoAlert

ACTIVE

Adaptation ID “201”
Table 4: Failure of Steer-by-Wire on RACE DCC

The practical test showed the uninterruptible steering by the continuously lateral motion of the
steering wheel. The test system displayed the reactivation of the SbW application on the TMDP
platform. Similar to deactivating the SbW application on the RACE DCC (described above), it was
also possible to deactivate the Brake-by-Wire application on the RACE DCC.

3.2.3 Failure of Core Node

To simulate the failure of an entire Core Node, electric switches were integrated into both platforms
to allow an easy interruption of the power supply for a specific ECU. Based on this, it was possible
to simulate a complete failure of a Core Node, which consequently led to the suppression of Health
Vector transmission. In this test case, the power of the RACE DCC was interrupted, so the TMDP
assumed that all RACE DCC applications are in a DEACTIVATED state. The SAPC consequently
reacted with the corresponding adaptation (adaptID “300”) allowing the TMDP to take over the
critical steering and braking functionality, while deactivating the non-critical SomnoAlert application.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

TMDP RACE DCC
appID “1”: Steer-by-Wire

ACTIVE
appID “4”: Steer-by-Wire

DEACTIVATED
appID “2”: Brake-by-Wire

ACTIVE
appID “5”: Brake-by-Wire

DEACTIVATED
appID “3”: SomnoAlert

DEACTIVATED

Adaptation ID “300”
Table 5: Failure of ECU

The practical test once again showed the uninterruptible steering by the continuously lateral motion
of the steering wheel. Analogously, a failure of the TDMP also led to a correct adaptation of the
RACE DCC. To protect against undefined system states through ECUs re-joining the SafeAdapt
network after a failure or ECU reset, additional tests were performed by repowering a failed ECU
after an adaptation occurred. As expected, the newly powered ECU was prevented from joining the
network, thereby, ensuring a consistent system state.

3.2.4 Failure of Power Source

The RACE e-vehicle prototype is equipped with two independent power sources. For an easier
understanding the two integrated electric circuits were called “blue” and “red” (see Figure 2). A
separate power switch for each circuit is implemented in the vehicle. Therefore, it was possible to
shut down the whole “blue” or “red” power supply. In this case, not only the relevant Core Node
failed but also the half of all redundant sensors and actors. Figure 5 displays both failure scenarios.

Figure 5: Failure of “red” and “blue” power source

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Despite this severe failure, the steering functionality could still be supplied without any drawbacks
with respect to availability.

In sum, the practical tests showed the uninterruptible steering with continuously lateral motion of
the steering wheel during all three failure test cases. Thereby, the soundness and safety of
SafeAdapt’s adaption method could be underlined.

3.2.5 Use Case concerned with Plug’n’Play and HW/SW-Updates

Installation of New Component

The goal of the SafeCar prototype is to verify that new components (SW or HW) can be integrated
into the vehicle, while the safety requirements of the overall system are preserved (UC_211_01).
Therefore, a compositional, deductive safety analysis in form of an FTA (as recommended by ISO
26262) is performed to evaluate that the safety requirements are still met after the installation of
the new component. The SafeCar, as a conceptual representation of the RACE car, is a radio
controlled demonstrator vehicle as depicted in Figure 6. For further details, please refer to
Deliverable D5.1 [1].

Figure 6: SafeCar demonstrator platform (see Deliverable D5.1)

The case study UC_211_01 “Installation of New Component (New)” is implemented by providing a
system architecture model in form of a SysML internal block diagram (IBD) to describe the system
architecture of the emergency braking function.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 7: Component Fault Tree Analysis tool composR

In order to evaluate whether the systems’ safety requirements are fulfilled, a compositional safety
analysis model of the emergency braking function is provided in form of a Component Fault Tree
(CFT) using the composR tool. composR is a tool for building CFTs and enabling qualitative and
quantitative FTA based on the CFT models (see screenshot in Figure 7). Moreover, composR
allows the integration and synchronisation of any system design modelling approach (e.g., SysML,
EAST-ADL, UML, etc.) with CFT methodology. Hence, such a compositional and model-based
development strategy enables deductive safety analyses of the system in a qualitative as well as a
quantitative manner (cf. Figure 8).

The integration of a new component is demonstrated by adding it to the system design model. The
safety analysis model is adjusted accordingly in an automated manner by adding the CFT element
of the new component (e.g., from a repository) and integrating it into the existing CFT model.

Figure 8: Compositional, model-based development strategy (UC_211_01)

System design

Seamless

Safety analysis

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

For instance, it is assumed that the emergence braking functionality of the SafeCar demonstrator is
realised using one single ultrasonic sensor to detect obstacles in front of the vehicle (variant with 1
sensor). The result of the CFT-based FTA for this architectural realisation of the functionality is
shown in Table 14. composR allows the designer to add a second ultrasonic sensor (homogenous
redundancy) to the system design model. Now, the CFT is adjusted to the new system design to
automatically validate the system in terms of safety (see results in Table 9). Finally, the results of
the safety analysis before and after a new component is integrated are compared to check whether
the system still meets its predefined safety requirements. By adding a second redundant sensor as
input for the emergency braking functionality, the failure probability for the safety relevant hazard
(the emergency braking fails although an obstacle is detected) decreases. The reliability relevant
failure (the emergency braking is triggered sporadically) is increased by the introduction of a
second sensor to the system design. In this evaluation scenario, it was assumed that stopping the
vehicle is the safe state.

Top Event Probability

Omission of Braking (variant with 1 sensor) 1.0 10-8 1/h

Sporadic Braking (variant with 1 sensor) 4.5 10-8 1/h

Omission of Braking (variant with 2 sensors) 6.92 10-9 1/h

Sporadic Braking (variant with 2 sensors) 5.3 10-8 1/h

Table 9: Results of the quantitative CFT-based FTA for the SafeCar (UC_211_01)

Update of Function

The use case UC_311_01, “Update of Function (Update)” has been selected to demonstrate how
new software components can replace existing ones, while the vehicle is in the field and the safety
requirements of the overall system are preserved.

In this use case, the driver wants to upgrade his vehicle by installing new software at an official
maintenance service provider. Once in the garage, the maintenance service provider proceeds to
perform all required overhaul operations. The goal is to demonstrate that a new version of a
software component can replace an existing one, while the safety requirements are preserved.
Therefore, a safety analysis is performed to evaluate that the requirements are still met after the
update of a software component.

The case study UC_311_01, “Update of Function (Update)” is implemented in the same way as
use case UC_211_01 “Installation of New Component (New)”, with the difference that an existing
component is exchanged by a different version. Thereby, the composR tool allows the automatic
adjustment of the CFT model, when a component within the system model is replaced by a
different one. Moreover, since deployment relations of software to hardware can be represented
within the CFT methodology using so-called failure dependencies [3], changes of the deployment
of software functions to ECUs can also be evaluated automatically in terms of safety, using
composR.

For evaluation, it is assumed that the emergence braking controller (EBC) of the SafeCar
demonstrator is available in two different variants. In variant 1, the EBC stops the vehicle if an
obstacle is detected within a fixed, predefined distance in front of the car. In variant 2, this distance
is depending on the current speed of the vehicle. With increasing speed of the car, the distance is
also increasing at which the vehicle starts emergency braking, in case an obstacle is detected.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

The results of the CFT-based FTA for the realisation of the emergency braking functionality with
both variants of the EBC are shown in Table 10. Moreover the results of the safety analyses before
and after the update of an existing component are compared, to check whether the system still
meets its predefined safety requirements. The results clearly show that the failure rate of the
hazard (the emergency braking fails) is higher in variant 2 (the more complex one) than in variant
1. The failure rate for the hazard (emergency braking is triggered sporadically) is the same in both
variants of the EBC.

Top Event Probability

Omission of Braking

(variant 1)

5.33 10-9 1/h

Sporadic Braking

(variant 1)

5.3 10-8 1/h

Omission of Braking

(variant 2)

6.92 10-9 1/h

Sporadic Braking

(variant 2)

5.3 10-8 1/h

Table 10: Quantitative CFT-based FTA for the SafeCar (UC_311_01)

3.3 Dynacar Demonstrator

In the context of SafeAdapt, Dynacar was used to analyse two main scenarios to show that the
SafeAdapt approach is viable. The first use case is related to “Degradation of Steer-by-Wire
Application” (see UC_411_01) and estimates the failover time for a Steer-by-Wire application. The
failover time is defined as the maximum time the vehicle can operate safely without control. This
use case was analysed with a Driver-in-the-Loop (DiL) approach, since the driving performance
effect is mainly dependent on the user characteristics (age, skills, experience, etc.).

The second scenario is related to the “Adaptation for Range Extension” (as defined in the
UC_511_01). It analyses the possible range extension by increasing the energy efficiency through
adaptation.

3.3.1 Platform Description

The Dynacar platform is a real-time vehicle dynamics simulation software solution based on:

 Real-time testing platform software (NI Veristand® real-time framework)

 Graphic visualisation system and vehicle control for real test driving in a virtual environment

 Full vehicle dynamics model running on real-time equipment (PXI hardware)

 Full Hardware-in-the Loop and Model-in-the Loop configurable capabilities

Dynacar gives the possibility to run hardware or software against a vehicle dynamic model to test
the vehicle dynamics behaviour, so it allows the mixing of virtual or real ECUs, vehicle sensors and
vehicle control variables are used to change the behaviour of the vehicle in real-time. A detailed
description of Dynacar’s HW and SW architecture is given in Deliverable D5.1 [1]. In Figure 11, a
schematic of the Driver-in-the-Loop simulator is presented.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 11: Driver-in-the-Loop Simulator

Moreover, optimisation with respect to energy efficiency could be safely evaluated in this driver-in-
the-loop simulation. Therefore, the drowsiness detection SomnoAlert has been integrated as an
exemplary non safety-critical application, which can be shutdown to save energy consumption and
thus, leading to an increased range of an e-vehicle.

The screen shown in Figure 12 gives the possibility to control the state of different use cases. It
activates the fault trigger for the Steer-by-Wire performance degradation analysis, and it also
activates the energy efficiency cases. Finally, the Dynacar GUI allows the possibility to configure
the autonomous driving mode to compare the energy efficiency between different configurations,
without the need of manual driving control. This facilitates the comparison of energy consumptions.

Figure 12: SafeAdapt use case monitor interface

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

3.3.2 Use Case concerned with Maximal Failover Times

The use case UC_411_01, “Degradation of Steer-by-Wire Application” was selected as
representative of a critical use case, where a critical system for the vehicle safety is recovered by
adaptation. This use case is utilised to estimate the admissible failover time. The Dynacar
demonstrator is used to measure the maximum response time of the system without any safety
deviation perceived by the driver. Figure 13 shows the steps for the test case scenario definition.

Figure 13: Steps followed for test case scenario definition

The test case definition was started by analysing possible ECU failure propagation and studying
the hypothetical impact in the safety performance of the steering system. This implies that the
possible HW/SW faults could lead to specific errors that can (or not) propagate to the system e.g.,
cyclic redundancy check (CRC) validation to avoid incorrect functional set point selections, like the
steering angle. After these steps, 2 fault propagation cases have been identified:

 F3: Core Node failure or SAPC adaptation time being too long for safe system recovery,
causing a continuously cached steering set point (“frozen” SbW). As a consequence, the
main aspect when evaluating its impact on SbW is the SAPC adaptation time.

 F4: Power failure, e.g., due to inverter malfunction, in the active steering mechanism
causing that vehicle to lose steering angle due to self-centring effect on the wheels.

The test environments (TE) must evaluate the impact on the steering performance. Therefore, the
selected scenarios are those where SbW performance degradation has the biggest impact:

 TE1: Urban environment (40/50 km/h). These cases comprise closed curves where the
driver must change the direction of the vehicle and so the driving operation has a high
steering demand. This only occurs for urban like roads and the selected speeds are
medium/high for these environments.

 TE2: Highway driving (150/175 km/h). These cases comprise high speed scenarios during
highway driving with steering demand. The main reason for their selection is that at high
speeds any small degradation in SbW response could be safety-critical. In this scenario,
the high steering demand is caused by a reverse curve and a constant radius curve.

 TE3: Sporty driving with high steering demand and driving as fast as possible.

For each test case that evaluates the impact of a SbW degradation, the following parameters have
been defined:

 Target vehicle speed. Target speed for the driver should try to maintain along the test.

 Fault duration time. Time interval for which the steering system is performing in one of the 2
defined degraded states (50, 150, 250 and 400 ms).

 Fault type. The degradation in the SbW (Steer-by-Wire) is simulated by taking 2 possible
fault cases: frozen steering state (F3) for a predefined amount of time and torque-less
steering state (F4) where the momentum generated by the road centres the steering.

It is important to note that the test case scenarios itself have been completely specified with the
previous steps, but there has been an additional “tuning” step to select valuable fault configurations
to avoid the execution of test cases that do not yield any extra information. In particular, a prior

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

non-accurate failover time (near 200 ms) has been estimated with only 3 drivers and then the test
case failure times have been selected by taking this preliminary result into account.

These fault injection experiments are configured based on the test evaluator in the Dynacar HMI,
defined in Veristand (cf. 2.4 in D4.3). This is carried out by triggering a fault when the vehicle
passes a specific position in the driving scenario, e.g., the two cones that represent the line of the
trigger shown in Figure 14.

Figure 14: Vehicle approaching cones that represent the road intersection for the fault trigger

For a correct driver sample that reflects the drivers’ responses well, a sample of 25 volunteers with
the following distribution has been used to perform the tests. The selection followed a realistic
driver distribution (shown in Figure 15) so that they can be generalised for a European driver
distribution context:

 5 drivers with < 6 years of experience
 4 drivers with experience between 6-10
 3 drivers with each group between 11-15, 16-20 and 21-25 years of experience
 2 drivers with each group between 26-30, 31-35 and 36-40 years of experience

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 15: Driver distribution by gender and age in Spain (Source: Dirección General de Tráfico)

For the evaluation of each test case, the following outputs were captured:

 Change of the yaw rate (defined as the ratio between the yaw angle or vehicle orientation in
the lane with the time interval duration, what is equivalent to linear speed divided with
steering radius). It is an objective parameter to evaluate how the faulty behaviour influences
the driving or the controllability aspect.

 Deviation from the lane centre, as another parameter for an objective test evaluation.

 Driver subjective perception. After each test, the drivers were asked to answer if they
detected performance degradation. The answers were then processed to calculate the
mean perception for each test case given in Table 6.

Environment, Fault
Type, Driving Speed

Simulated Fault Duration

50 ms 150 ms 250 ms 400 ms

TE1, F3, 40 Km/h 1.0 1.1 1.1 1.4

TE1, F3, 50 Km/h 1.0 1.1 1.3 1.6

TE1, F4, 40 Km/h 1.0 1.1 1.5 2.4

TE1, F4, 50 Km/h 1.1 1.2 1.6 3.4

TE2, F3+F4, 150 Km/h 1.0 1.2 1.2 2.2

TE2, F3+F4, 175 Km/h 1.1 1.0 2.3 3.3

TE3, F3+F4, unlimited 1.0 1.1 1.7 3.0

Table 6: Mean driver safety perception

Scale used: 1 – Not perceivable, 2 – Slightly perceivable, 3 – Perceivable but not dangerous and
 4 – Perceivable and dangerous

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

After the analysis of the results, there is no perceivable effect in the vehicle handling in the driving
simulations if the steering performance is degraded for only 50 milliseconds (ms). There were only
isolated cases in which the driver perceived “something”. However, it is more reasonable to
consider these cases as being false positives, as drivers also imaging faulty events for simulations
without any error injection.

To confirm the subjective perception of the drivers in an objective way, the recorded driving
parameters were evaluated. The plots of the test cases show a clear “flat” or “hole” event at the
moment at which the error is occurring, corresponding to the performance loss cases of “frozen”
steering and “torque-less” steering, respectively (cf. Figure 16). The more visible the “flat” or “hole”
event is, the clearer is the effect on the performance (cf. Figure 17).

Figure 16: Dynacar TE1, faults are clearly visible as “hole” (left) or “flat” (right)

Figure 17: Dynacar TE2, with multiple faults, more visible faults on right plot

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

After analysing the coincidence in the plots and the subjective perception annotations, the
conclusion is that with a fault duration greater than 250 ms the driving could be clearly unsafe, and
that the driver starts perceiving the performance degradation when the fault duration is about 150
ms. The data shows that an adaption time of 50 ms in the SAPC could not degrade the safety
performance because the estimation of the driver reaction time is close to 150 ms, 3 times the
presently selected SAPC adaptation time.

These results validate the requirements defined in the Deliverable D2.2 [4] for the overall time
response for safety-critical functionality. In D2.2 it was defined that failover times should be less
than 50 ms, with 10 ms for fault detection and 10 ms for passivation, so that the fault-recovery
takes less than 50 ms for safety-critical functionality with required fail operational behaviour.

3.3.3 Use Case concerned with Energy Management

The use case related to energy efficiency (UC_511_01, “Adaptation for Range Extension”),
analyses the range extension of the vehicle attainable with various energy efficiency adaptations.
This chapter describes how the use case has been realised. For detailed calculations of efficiency
improvements see Section 5.3.

In this use case the vehicle is driving on the road and the Battery Management System (BMS)
detects a SOC (State Of Charge) of less than 35%. In this situation, the SAPC can be used to load
different application profiles, where the use of energy is prioritised to increase the remaining range.
The following adaptations were performed:

 The BMS cuts off the power supply for auxiliary services (radio, audio system, navigation,
and air conditioning). The services’ energy consumption will be defined from literature.

 The In-Wheel-Motor (IWM) performance (torque and power) is reduced by 50%.

 The BbW system activates rules to maximise the regenerative braking while taking into
account that the vehicle dynamics must remain safe.

In order to evaluate the range extension criteria, the Dynacar platform has been used to simulate
the New European Driving Cycles (NEDC) shown in Figure 18, as it is considered a reference
standard in fuel consumption analysis. The reference NEDC is a speed-time profile that lasts 20
minutes and implies that the vehicle travels a 10 km interval. The platform was configured to
autonomous driving mode in order to eliminate influences from a manual driver.

Figure 18: Energy consumption test for range extension evaluation (UC_511_01)

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Using the measurements from this setup, Section 5.3 shows that if the SAPC triggers the
switchover when the battery SOC drops below 35%, the vehicle’s range can be extended by 25%.

Next to energy saving potential from driving dynamics, SafeAdapt’s adaptive technology was also
used to deactivate the non-critical SomnoAlert® drowsiness detection system in the event of a low
remaining battery charge.

Current drowsiness detection systems are based on the analysis of many parameters available on
the CAN network of the vehicle in order to deduce the state of the driver. In the simplest form, they
only make use of signals commonly available, like the action on the pedals, the steering wheels,
the blinkers state (on/off), the hour of the day, and so on. More sophisticated ones combine this
information with the analysis of the trajectory of the vehicle in the lane using the output from a Lane
Departure Warning system, comparing the driver performance against a reference standard
measured at the beginning of the ride. In the SafeAdapt project the most recent version of
SomnoAlert is used, which is based on the direct measure of a biologic parameter of the driver,
namely the measure of a respiratory effort to infer drowsiness. Thoracic effort is related to
autonomic nervous system, so it can provide direct information of the driver physiological state.
The algorithm performing this job, called TEDD (Thoracic Effort Drowsiness Detection), was
developed using a direct measure done using a thoracic band worn by the testers, and connected
to a PC via Bluetooth. Along the project it was further carried on the development of an algorithm
able to extract the thoracic effort from the images of a camera looking at the driver thorax, in order
to perform a contactless measure of this parameter to be elaborated by the TEDD algorithm to
detect the drowsiness condition and issue an appropriate warning.

Within SafeAdapt, the SomnoAlert is used as an exemplary ADAS application which can be
deactivated in an energy saving scenario. SomnoAlert, which is based on a software analysing
images taken by a camera, is sufficiently representative for a typical ADAS based on camera
sensors, especially in terms of energy consumption and with respect to the upcoming new
generation of semi- and fully-automated vehicles. Many of these vehicles are expected to use
electrical propulsion, and thus, could make use of SafeAdapt architecture. So a first essay about
how to handle the need of such systems with the need of using adaptive network appeared quite
interesting. Therefore, SomnoAlert has been implemented on the Dynacar simulator. As explained,
the SomnoAlert application was used as an example ADAS application, and the use case
implemented is the following: if the battery charge level is above a certain threshold, the application
works normally, but once the battery charge level is below that threshold, all the auxiliary systems
are switched off, thus, demonstrating the versatility of the adaption concept. The following Table 7
shows how the SomnoAlert system is adapted based on the vehicle’s state of charge.

NON‐DROWSY DROWSY

BATTERY Nothing to do
SomnoAlert alarm (either
acoustic or visual)

NO BATTERY Switch off auxiliary systems Switch off auxiliary systems

Table 7: States of SomnoAlert

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

3.4 Frozen-Standby Demonstrator

3.4.1 Platform Description

To evaluate the full spectrum of adaptivity with respect to fault tolerance, the ability to perform
autonomous recovery in a flexible manner is of specific interest. As the RACE, TMDP, and
AUTOSAR platforms do not support the concept of dynamically loading individual applications at
runtime, an additional demonstrator is used to evaluate the feasibility of this dynamic scenario. For
this, the concept of an “application database” is introduced, which stores the binary images of all
applications, allowing them to be transferred on-demand to the node requiring the application, as
depicted in Figure 19. In case of a failure of the “main node”, an application originally running on
this will be transferred from the “application database” to a “back-up” node and continue working
there. This will ensure the safe operation of the whole system without noticeable interruptions.
Further, a time-triggered switch is used to fulfil the strict time requirements. With this setup, it is
now of interest to determine the time needed for detecting the failure, fetching the application from
database, and running it on the back-up node. Based on this measurement the suitability of this
adaptation method with respect to fail-operational scenarios can be judged.

Figure 19: Frozen-Standby demonstrator

The demonstrator is implemented with two nodes and a deterministic Ethernet network. The whole
system setup consists of two computation nodes, a TTTech Hermes gigabit switch and two
additional supportive devices: one to supply these two nodes with a sensory input and a second
one as an application database to deliver failed application to the back-up node. Beaglebones
were chosen as supportive devices for demonstrator setup (see Figure 20).

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 20: Frozen-Standby demonstrator: Two ECUs, Hermes Switch and two beaglebones

3.4.2 Evaluation of Failover Times

For the evaluation of frozen-standby failover times, the time required by the following
reconfiguration steps is considered:

a) Detection of faulty function (hardware and/or software fault)
b) Disconnect the faulty function / unit from the network
c) Lookup in reconfiguration table to determine new host for failed functionality
d) Preparation of new host for taking over the function (i.e., stop an non-critical function)
e) Load at least a gracefully degraded version of functionality onto new host
f) Connect the actuators and sensors to the new unit
g) Start the function on the new unit

Based on this, the measurements for the failover time was conducted by analysing every step and
measuring the required time, as further described in the following and also depicted in a trace
output of the demonstrator in Table 8:

1) T0 is the start moment which is denoted when the first heartbeat is sent from ECU1 to
ECU2

2) Operation step 1: artificial insertion of a failure in ECU1 triggers the reconfiguration process
and initialises the time counting for the reconfiguration

3) Operation step 2: Detection time between ECU 1 crashing and ECU 2 recognising that a
failure occurred. There is a waiting interval integrated in t2 in order to differentiate between
a missed packet and a crash. This time could be a multiple of the packet sending frequency
of ECU1. Below it is set to 6 ms, which equals the time duration for 3 packets (Time
needed: t1 = 6 ms)

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

4) Operation step 3: process time of the switch t2 = 8.172 µs and upload of degraded function
via the switch from application database to ECU2

5) Operation step 4: initialise and start programme on ECU2 (note: the sensor simulation is
connected to both ECUs permanently since there was no significant influence on the time
to establish a new connection. The time was in the lower µs range and is thereby
considered negligible)

In sum, it can be assumed that the Frozen-Standby reconfiguration will be possible in 6 ms to 10
ms. Deviations will depend on the sending frequency and size of the packets.

ID Message

[Backup random number
generator]

Initialized

[Backup random number
generator]

Going to wait for signal from heartbeat watcher...
Node1 started sending at: 2016-06-28 15:05:09

[Heartbeat watcher]
The application failed to receive the last 3 heartbeats in the last
6000000ns

[Backup random number
generator]

Crash detection time: 2016-06-28 15:05:40.399640194

[Backup random number
generator]

Time from crash to backup started: 0.006008172

[Backup random number
generator] Backup generator started: 2016-06-28 15:05:40.399648366

Table 8: Trace of Frozen-Standby demonstrator

3.5 Fail-Operational AUTOSAR Demonstrator

In order to demonstrate the compatibility between the Safe Adaptation Platform Core (SAPC) and
then current AUTOSAR standard, a specific demonstrator was developed. It is moreover used to
showcase that the adaptiveness of the SafeAdapt project is independent from the used technology,
thus, allowing the use of more dynamic and flexible operating systems, as seen in the RACE
demonstrator and more static operating systems, such as OSEK and AUTOSAR. In addition, the
demonstrator is utilised to determine how adaptivity can be integrated into the AUTOSAR standard
in a non-invasive manner and rely on existing concept as far as possible.

The demonstrator is a scale model of an electric vehicle with electronic steering and braking
capabilities (Figure 21). At its core, it consists of two control units responsible for providing critical
steering and braking functionalities as well as additional non-critical functionalities. Consequently,
the two control units are both equipped with an instance of the SAPC in order to ensure fail-
operational behaviour for the critical functionalities. Moreover, both ECUs are running the Arctic
Core AUTOSAR implementation. In detail, both ECUs share a global time base to allow the SAPC
to be executed in a synchronous manner, thus, enabling short failover times within a single
execution period of the SAPC. Next to this, each ECU is preconfigured with a set of schedule
tables for every anticipated failure mode of the system. Thereby, the foundation for system-wide
runtime adaptation is given while still adhering to the static design principles of the AUTOSAR
standard. The mapping between these schedule tables and the system-wide failure modes is
stored within the local database of the SAPC, including additional information, such as the required
PDU groups in each failure mode (cf. Deliverable 3.3 [5]). At runtime, the SAPC can now perform a
lookup in its database with the received Health Vector information, and in the case of a failure,

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

instruct the AUTOSAR OS to activate a different set of PDU groups, cancel the currently active
schedule table, and start the new schedule table at a predetermined offset relative to the global
time base. Through this, all ECUs transition into a new mode of operation at the same point in
time, thereby, eliminating the potential for undefined system states in the case of a failure. In
addition, the system supports backup instances to either be in a hot- or cold-standby mode,
thereby allowing resource-efficient implementations of fail-operational behaviour.

Figure 21: Fail-Operation AUTOSAR demonstrator

Next to the runtime perspective, this demonstrator further focuses on an integrated tool workflow,
thereby, interlinking the system modelling results of Work Package 4 with the runtime adaptation.
As such, the following workflow depicted in Figure 22 only presents the excerpt concerned with
AUTOSAR-related aspects of the entire system design tool flow (see Figure 23).

More specifically, the developed workflow aims at automating AUTOSAR-related design and
configuration aspects. Here, system requirements, such as the application-specific maximal
acceptable failover times, and further properties, such as worst case execution times (WCET) or
HW-specific failure modes are exported from the higher order EAST-ADL models of Work Package
4 in form of AUTOSAR ARXML exchange format files. Thereafter, a tool-based analysis of the data
flows between applications, the hardware architecture and its failure modes is performed to derive
a mathematical problem formulation. This formulation aims at synthesising a valid system
configuration for each anticipated failure mode by solving the generated equations.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 22: AUTOSAR workflow

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

More specifically, each system configuration consists of a mapping between a certain system
state, which is communicated by the Health Vector, and a set of ECU-specific runtime
configurations. These ECU-specific configurations in turn contain detailed AUTOSAR timing
requirements for every hosted application and every network communication interaction between
applications. Based on this information, the local database is generated for each SAPC instance.
In addition, the previously calculated timing requirements are detailed enough to enable a direct
transformation into AUTOSAR ECU configuration artefacts, which are in turn directly used for
generating RTE and module source code, such as the OS schedule tables, PDU and signal
routings, communication timings, OS tasks, and application to task mappings.

In sum, the developed workflow and tooling provides the foundation for efficiently applying the
concept of adaptation in the context of AUTOSAR. This is achieved by eliminating a multitude of
human sources of error through tool automation and significantly reducing the design effort for fail-
operational systems. Moreover, the process ensures the typical safety benefits of static system
design while still allowing a reduction in complexity through generic runtime adaption, thus
showcasing the most advanced form of safety-critical runtime adaption possible within the current
AUTOSAR standard.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

4 Evaluation of Development Process

4.1 Tool-Chain

A number of tools have been developed to support the design, validation, and implementation of
adaptive vehicle software systems. This includes a modelling tool for designing the software
system using EAST-ADL, and a tool for validating the system’s adaptive behaviour using
simulation and fault injection, the automatic generation of the AUTOSAR model based on the
EAST-ADL model, and the generation of the configuration file for the SAPC database. In the
following, these tools are described in detail. Figure 23 presents an overview view of the
SafeAdapt tools regarding the design, implementation and V&V flow.

Figure 23: SafeAdapt tools overview

4.1.1 Modelling Adaptive Vehicle Software Systems

The system used in the demonstrator is composed of a set of applications (e.g., Steer-by-Wire,
Break-by-Wire, etc.) that interact with each other to meet the needs of the user. In addition, while
the system is in operation it needs to adapt itself in response to context changes such as
application failure. In the following, an approach to model the RACE car demonstrator is presented.

Modelling the System’s Functional Architecture

The system’s functionality is modelled as a composite structure that consists of a set of functional
components that interact with each other through functional ports. In addition, to specify the
system’s variability, the cardinality of the system components is utilised. A component with
cardinality {0 or 1} is an optional component which can or cannot exist at runtime, while the

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

cardinality {2} means that the component has two instances and the system can switch between
them at runtime. A component with cardinality {1} specifies that the component is mandatory and
should always exist while the system is in operation.

Figure 24: Design model for the vehicle system’s functionality

The design model for the adaptive vehicle software is shown in Figure 24. In this figure, the fully
adaptive cruise control (ACC) has the cardinality {2} which means that it has two instances at
runtime. The two instances can replace each other in the case on of them fails. The SomnoAlert is
an optional component, i.e., it can exist or not while the system in operation.

Modelling the System’s Hardware Architecture

As discussed above, a system component may have two instances (e.g., the ACC). These two
replicas need to be allocated to different electronic control units (ECU) to increase the reliability of
the system. Therefore, in case of a failure of the ECU that hosts the active replica, the other replica
can be activated to achieve the system functionality. To specify such an allocation, the system’s
hardware platform needs to first be specified and then the allocation of the software components
can be defined (see below).

Figure 25: Design model for the system’s hardware architecture

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

The hardware model is designed as a composite structure that contains the hardware elements of
the system (e.g., ECUs, sensors, actuators, etc.). A hardware platform model is shown in Figure
25, which corresponds to the RACE vehicle architecture. It consists of the two ECUs. These RACE
and TMDP ECUs are connected with each other via a hardware connector. It also includes a
number of sensors and actuators such as brake pedal, steering box, steering wheel, etc.

Modelling the Timing Requirements

To model the system’s timing requirements, the technique proposed in the project TIMMO-2-USE
(TIMing MOdel - TOols, algorithms, languages, methodology, and USE cases) was adopted. To
specify a timing requirement, events that are associated with software components or one of their
ports are defined. These events are then used to define a timing constraint such as execution time
constraint, periodic constraint, reaction constraint, etc.

For the adaptive vehicle system a number of constraints have been defined. Two constraints are
shown in Figure 26. First, to specify a periodic constraint, an event associated with the Brake-by-
Wire application is defined (BBWEvent). Then, a periodic constraint is specified that references this
event. The BbW application has a minimum inter-arrival time and period of 60 milliseconds.
Secondly, the execution time (10 milliseconds) for one of the functions of the Brake-by-Wire is
defined based on the event BBW_T1Event that references the BBW function.

Figure 26: Example timing requirements in an adaptive vehicle system

Modelling the System’s Adaptive Behaviour

To adapt the system in response to context changes, there is a need for a mechanism to decide
when and what to adapt and then apply the defined adaptation actions. This is performed by the
system management component. The system management switches from one system
configuration (a certain state of the system) to another configuration in response to an adaptation
trigger (e.g., failure of the ACC). Thus, the adaptation triggers and the different runtime
configurations (states) of the system must be modelled. Both, the adaptation triggers and the
system configuration are a runtime system state. To model the system states, the concept of
instance specification was adopted, where instances of the system’s design (functionality and
hardware platform) are created and configured to specify the runtime configurations of the system
and the adaptation triggers.

An example adaptation trigger is shown in Figure 27 (see the left part). For each application a
runtime state is defined which can be one of the following: Active, Inactive, Hot, Cold, or Failed. In
this example SBW0, BBW0, SMA, and AEB are in the state “Active”, SBW1 is in the state “Hot”,
BBW1 and ACC1 are in the state “Cold”, and ACC0 is in the state “Failed”.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 27: Specifying the adaptation triggers and the system response to that trigger

An example system configuration to recover from the failure of ACC0 is shown in Figure 27 (see
the right part). The instance specification of each application is defined as <Application name, ECU
allocation, State> where this configuration is defined as follows:

{<SBW0, RACE, Active>, <SBW1, TMDP, Hot>, <BBW0, RACE, Active>, <BBW1,
TMDP, Cold>, <SMA, TMDP, Active>, <ACC0, RACE, Active>, <ACC1, TMDP,

Cold>, <ACC2, TMDP, Hot>, <AEB, RACE, Active>}

To model the adaptive behaviour of the system, a state machine approach was utilised. In the state
machine in Figure 28, the states are the different configurations of the system while the transitions
are the adaptation triggers that move the system from one configuration to another. For example,
in response to a failure of the ACC (the adaptation trigger specified on the left part of Figure 27),
the system moves from its initial configuration to a configuration that recovers this failure (i.e., the
system configuration shown in the right part of Figure 27). This switching of the system is specified
using the first transition “ACCFailure” in Figure 28. In this transition, the state of the first instance of
the ACC is changed from “Failed” to “Inactive” while the state of the second instance of the ACC is
changed from “Hot” to “Active”.

Figure 28: Adaptive behaviour for the vehicle software system

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

4.1.2 Simulation

In order to ensure that the vehicle software system model in the previous sections is going to
execute correctly and improves the reliability of the system by reacting to the expected failures, the
system can be simulated. As shown in Figure 23, there are two different ways to simulate an
application. Simulation can either use the binary code for a target processor or more high level
code. The former is done with UniSim-VP, the latter with the ERNEST simulator, which are
described in the following.

Code Generation for Validation

At first “C” code needs to be generated that will run on the UniSim simulator. For this, an Eclipse
plugin was created that transforms the design models into “C” code. Figure 29 shows how the
plugin can be used to generate “C” code. The software engineer can use the modelled state
machine for the adaptive behaviour of the system to generate and execute a UniSim “C” project
automatically.

Figure 29: SafeAdapt plugin to generate “C” code from the design models

The generated project as shown in Figure 30 consists of simulator files, an adaptation manager,
system applications, scheduler, and telnet connection.

Simulator files: The simulator files include the UniSim simulator and its configuration file. The
configuration file specifies, for example, the binaries to run on the simulator (e.g., main.c.elf) and
the starting address for executing the binary based on the simulator memory map (see Figure 30)

Adaptation Manager: The adaptation manager is responsible for executing the adaptation
scenarios. It has three main tasks: “trigger adaptation”, “decide adaptation actions”, and “execute
the adaptation actions”.

System Applications: For each software component defined in the design model, the
corresponding “C” code for the application (i.e., an empty skeleton) is generated.

Scheduler: To coordinate the execution of the system’s functionality and the adaptation manager, a
system scheduler that manages the execution of the applications and the adaptation scenarios is
generated.

Telnet Connection: To monitor the execution of the adaptation scenarios, the telnet connection
outputs some printouts that show the current system state, the trigger of the system adaptation,
and the execution of the adaptation plans.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 30: The generated C project that can run on the UniSim simulator

Validating Adaptive Behaviour

The software engineer can execute the generated C project (see Figure 31). The simulator is
launched using the configuration file (Figure 31-3) and a terminal is also launched and connected
to the simulator (see Figure 31-2).

Figure 31: Executing the generated C project on the UniSim simulator

When the simulator starts, it moves the system from the non-set state to its initial configuration as
shown in Figure 32. Then, it starts to execute the pre-defined adaptation scenarios (i.e., the
adaptation scenarios 1-4 in Figure 32). An example execution of a scenario is shown in Figure 32,
where in response to a failure of the first instance of the ACC, two actions are identified: change
the first instance state from “Failed” to “Inactive”, and change the second instance state from “Hot”
to “Active”. Then its outputs are taken into account afterwards.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 32: Executing the specified adaptation scenarios

To inject faults, UNISIM-VP allows instrumenting the variables of the embedded software. An
example of an injected fault is shown in Figure 33. The state of the instance “SBW0” is set to
“Active” while the state of the instance “SBW1” is set to “Failed” (see Figure 33-1). When the
adaptation manager detects events that trigger an adaptation, it selects an adaptation plan which is
then executed in response to this trigger. In Figure 33-2, the injected fault cannot be handled by
the simulated software (i.e., there is no adaptation plan to cope with this fault). The advantage of
the simulation is to detect such a situation early in the development and either define a specific
adaptation scenario or rely on an automatic reconfiguration at runtime, as shown later in Section
4.2.

Figure 33: Injecting faults to the running software

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Simulation with ERNEST

The ERNEST simulation framework enables the analysis of non-functional properties as well as
adaptive behaviour on a system-wide level in early design stages. It is integrated into SafeAdapt’s
tool flow as shown in Figure 23. In order to validate non-functional requirements during the system
modelling and design phases, ERNEST links a proprietary simulation framework to the Eclipse
development environment. The heart of the ERNEST platform is a simulation-based analysis
programme based on a simulation framework developed under the SystemC description language.
The framework aids in simulating the behaviour of the modelled embedded system.

When using ERNEST, first of all a model of the system has to be created (in EAST-ADL for
example). This model can be transformed automatically into an analysis model according to the
ERNEST meta-model. In the analysis model the non-functional requirements of the system can be
defined as constraints. Now the simulation code is generated in SystemC, and then executed using
the simulation framework. During the simulation a trace is created which logs the communication
behaviour. To analyse the resulting data, the information is fed back into the analysis model.
Thereby the trace is analysed in order to check if all constraints are fulfilled. The results are
visualised and markers in the analysis model show which components violated a constraint.
Thereby the simulation results can be linked with the modelled system requirements.

Moreover the ERNEST simulation framework has been enhanced in order to allow the simulation
of the needed degree of adaptation on system and component level. The SAPC has been added to
the simulation framework, which allows the simulation of the SAPC to generate traces for the
different adaptation plans and switchovers. The traces can be analysed with respect to the defined
constraints to verify the integrity of the design.

4.1.3 Generating AUTOSAR Models form EAST-ADL Model

Code generation for the target is based on the AUTOSAR standard, whereas the design model is
specified using EAST-ADL. In order to assure consistency between these two models, it is
necessary to synchronise them by an automatic process. For this, a transformation that maps each
concept at the design level to its corresponding implementation concept is proposed. An existing
Eclipse plugin (AR Gateway) that exports an AUTOSAR models has been extended to cope with
timing information required for reconfigurations. In the following, the generated AUTOSAR model
of the demonstrator and its correspondence to the EAST-ADL model is described.

Each system application is transformed into a package (e.g., steer-by-wire application is
transformed to SbW package) that has a composite component. The composite includes the input
and output ports (e.g., sbw_p1 and sbw_p2), and a number of parts as shown in Figure 34. In
addition, the timing requirements for each component are defined using "virtual function bus
timing” elements. For example, SbW has a periodic constraint with period of 120 milliseconds and
minimum inter-arrival time of 120 milliseconds (see Figure 34).

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 34: The system application in the AUTOSAR model

Second, the internal functions of an application are transformed into application components which
include in/out ports and the internal behaviour. Timing information about the implementation is
added. For example, the execution time of task1 of steer-by-wire is 10 milliseconds on the TMDP
ECU as shown in Figure 35.

Figure 35: The internal functions of an application in the AUTOSAR model

Third, the hardware platform is transformed into three packages: ECUs, HWelements, and
Communication. Each processing element (node) in the EAST-ADL model is transformed into an
ECUInstance with communication ports to interact with each other. In addition, each node is
transformed into a hardware element. A communication package is generated that captures the
properties of the communication between the ECU instances as shown in Figure 36.

Figure 36: The hardware platform in the AUTOSAR model

Finally, the allocation of software components to hardware elements is transformed into a system
mapping element as shown in Figure 37. This mapping specifies to which ECU the software
elements are allocated (e.g., task1 of the emergency braking system (EBS) is allocated to RACE
ECU (see Figure 37).

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 37: The mapping of the software components to the hardware elements

4.1.4 Generation of Configuration File for the Adaptation Core

Based on the adaptation state machine, a configuration file for the SAPC adaptation core is
generated. This is split in two steps: at first a Java project is generated that contains the code that
represents the adaptation machine (see the top part of Figure 38). When the generated Java
project is compiled and executed, the configuration “C” file is generated as shown at the bottom of
Figure 38. This split was motivated by existing tooling and the ability to manually setup a
configuration file via Java code.

Figure 38: Generation of configuration file for SAPC adaptation core

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

4.2 Unanticipated Behaviour

Up to now, system configurations (set of software components along with their allocation to
hardware components) have been calculated at design time and stored in a database of the SAPC.
However, this approach cannot cover all scenarios: the combination of different adaptation reasons
would lead to an exponentially growing number of configurations (and in turn a big database). It is
also possible that a certain adaptation case has not been anticipated. Therefore, only a limited
number of configurations are created and validated at design time and the system has to be able to
calculate a new configuration at runtime (or utilise an internet-based service for this). It must also
validate a configuration, i.e., assure that resource and timing requirements are met. This
calculation requires a model@runtime, a subset of the original design model with information about
requirements of software components and the capabilities of the hardware components. In the
following, the focus lies on runtime support for ensuring the schedulability of a new system
configuration at runtime.

The considerations that follow are done in the context of a specific scheduling policy based on EDF
(earliest deadline first) for critical tasks and CBS (constant bandwidth server). The main reason for
this choice is that EDF/CBS has been proven to work for mixed-critical systems and the calculation
of a new schedule is much faster compared to the calculation of thread priorities. In particular, a
heuristic and iterative algorithm is used. The iterative nature makes it suitable to calculate new
configurations efficiently from existing ones. Figure 39 shows the output of a calculation tool for
finding an allocation for a specific system configuration (the screenshots are taken from a desktop
PC, but the calculation could also run on the target). It starts with an allocation where the most
important tasks get a budget equal to the worst case execution time, and the less important tasks
are assigned a budget equal to their average execution time. The initial allocation as shown in the
top of Figure 39 shows a schedulable allocation. The probability of meeting the deadline for
important tasks is 100%, while it is 11% for the unimportant tasks. Starting from this allocation, the
possible allocations are searched to find better allocations with an increased probability of meeting
the deadline of unimportant tasks. The bottom part of Figure 39 shows found allocations which
guarantee that the deadline for the unimportant tasks (QoS = 1.0) will be met. The new allocation
is found either through increasing the budget of the non-critical tasks or through moving tasks from
one processing unit to another.

Figure 39: Finding an allocation for an anticipated system configuration

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

During runtime, tasks can be added, removed, or their timing information is changed. To check the
schedulability of a new system configuration at runtime, the current system configuration is used as
basis. Then, the difference between the current configuration and the new one is identified.
Afterwards, a schedulability analysis is performed to check whether the new allocation is
schedulable or not.

In sum, the results indicate that it is acceptable to apply methods of unanticipated reconfiguration
for non-safety-critical applications, whereas the benefits of static system design and predetermined
adaptation are best suited for all safety-relevant reconfigurations, as uncertainty and risk are
eliminated through rigorous offline validation and verification.

4.3 SAPC development according to ISO 26262

One of the main challenges for the SAPC development is to carry it out in such a way that it can be
reused in different platforms. To do so, a Safety Element out of Context (SEooC) approach which
is defined in ISO 26262-10, has been pursued and a general error handling defined. Figure 40
illustrates the steps followed when establishing the SAPC component. In this section, the focus lies
on the left part i.e., the SAPC component development steps.

Figure 40: SAPC component development from ISO 26262

In order to share the same understanding of the standard, both the SEooC development team and
the item development team need to be aligned. For this, the guidelines shown in [6] were modelled
and then tailored to the SEooC needs and the requirements with respect to adaptation.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 41: Excerpt of the ISO 26262 standard model

In the deliverable D3.3 [5] challenging parts in terms of ISO 26262 compliant fully self-adaptive
systems have been introduced. Some of the recommendations made in D3.3 and D4.2 to tailor the
ISO 26262 model have been taken to the specific requirements for the SAPC development. One of
the first changes made were the inclusion of two new requirements associated with the Hazard
Analysis and Risk Assessment (HARA) phase:

 Consideration of adaptation scenario during the hazard identification task

 ASIL assigned for the SAPC should be based on the highest ASIL associated with the
application affected by the adaptation

Further, a model based approach has been followed, where the phases “software safety
requirements”, “software architectural design” and “software unit design and implementation” have
a stronger coalescence according to ISO 26262. With this in mind, the EAST-ADL language in
combination with the UML MARTE profile has been selected. In this sense, an early validation of
the design model has been applied especially for non-functional properties related to adaptation
such as timing constraints.

Another important tailoring to the requirements for the standard compliance is related to safety
validation. A system level Failure Modes and Effects Analysis (FMEA) has been performed and
used as a reference fault model in order to verify the SAPC implementation and its corresponding
safety/dependability requirements with respect to permanent faults at system level.

As previously stated, sometimes it is necessary to develop safety-related systems when all the
needed data is not yet frozen. Following this approach the SAPC development requires an ISO
26262 compliant SEooC process which is based on assumptions on an intended functionality,
context and use, including the assumptions of safety requirements. Later on, once the SEooC is
integrated, all the corresponding assumptions will be verified on the actual item.

The SAPC includes a safety case as required by the standard which summarises the safety
argument supported by adequate evidence. For this, a modular argumentation technique was

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

applied. The safety case architecture shown in Figure 42 illustrates the boundaries of the SAPC
and the information requested by other elements from the final item. The green modules in the
figure correspond to the SAPC argumentation and it is decomposed into M1.1 and M1.2. These
modules require the validity of certain claims that have been assumed related to the hardware
platform and the applications that are susceptible to be adapted. In this case, the assumed claims
are planned to be included in M2 in terms of the target platform in which the SAPC software is
going to be deployed. In addition to this, M3 is composed by the ones related to the applications
susceptible to be adapted.

Figure 42: SAPC Safety Case Architecture

Validating the concept of the SAPC developed as SEooC

For validating the concept of the SAPC developed as SEooC, it was integrated within RACE and
TMDP platform. For this integration, the “item development” activities shown on the right part of
Figure 40 must be performed. The integration should take into account requirements from the
standard as well as technical integration. Here, the focus is on integrating the SAPC into this target
platform and validating the assumptions. With respect to the steps shown in Figure 41, the target
further lies on connecting arrows between the SEooC development and the item development.
This includes the task of establishing validity of the assumptions in order to comply with the
requirement clause 2-6.4.5.6b of the ISO 26262 standard.

Previously, an assurance project with respect to the SAPC development has been specified. In this
assurance project, all the evidences are traced to ensure the fulfilment of the requirements to
comply with the standard as well as a safety case for the SAPC. Afterwards, a second assurance
project has been created, which focuses on compliance between requirements and the ISO 26262
standard in relation with the SEooC integration. As mentioned before, the applications
development and the platform development are considered black boxes and for the SEooC
integration only the assumptions made on the SAPC (functional safety requirements and safe
operational behaviour) and the guarantees offered (fault detection mechanisms and notifications
through APIs to the SAPC) are visible.

In addition, some activities for the correct integration have been performed. Here special attention
was paid to the safety validation where a new activity has been included for adaptation behaviour
simulation on a target environment. In order to ensure the adaptation timing for critical applications,
a vehicle dynamics simulation based analysis was also performed with the Dynacar RT tooling.

As seen in Figure 40, the validity of the assumptions must be established during the item
development phase illustrated on the right side. For explanatory purposes Table 9 shows the
validation done for the TMDP. In case the assumptions are not valid, either the SAPC or the
platform needs to be changed. During the vehicle development, part of the TMDP behaviour had to
be modified in order to apply and develop the interface to communicate the faults of the platform to
the fault filter block in the SAPC.

M1

Adaptation is
acceptably safe

M2
Safety

mechanisms are
put in place in
the board

M1.1

Adaptation is
triggered when

needed

M1.2

Adaptation
behavior is as
expected

M3
Application is

developed taking
into account
adaptation

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Assumptions made by the SAPC Validation within TMDP and critical applications
A Core Node failure shall be detected by a
lockstep mechanism

TMDP uses a hardware lockstep to detect a failure
on the platform

A memory failure shall be detected TMDP uses a MPU (Memory Protection Unit) to
detect memory failures

A timing failure shall be detected TMDP uses a SoC internal safety watchdog with
protected register sets to detect corruption of
configurations

TMDP uses an external chip performing watchdog
functions to detect system timer stops

A SoC bus system failure shall be
detected

TMDP includes a CRC mechanism on the SoC bus
system to detect timing failures

A power supply failure shall lead to fail
silent behaviour of the node

TMDP includes an external safety monitor to detect
a power supply failure and then fail silently

A sensor failure shall be detected by input
comparison

Input loss from a sensor is detected

A sensor failure is detected by input comparison

A network failure shall detected A network failure is detected by input comparison

There shall be plausibility checks at
application level

There are plausibility checks at the critical
application level

Application software shall be verified Applications have been developed in compliance
with ISO 26262 which requires software verification

Applications shall perform the functionality
as specified

Applications have been developed in compliance
with ISO 26262 and functionality has been verified

System architecture shall have redundant
sensors for safety-critical application

The system architecture used a 2 out of 3
architecture pattern for critical sensors

System architecture shall have redundant
actuators for safety-critical application

The system architecture ensures a 2 out of 3
architecture pattern for critical actuators

Transient faults shall be covered at ECU
level

Transient faults are addressed at TMDP platform
level

A platform shall not be woken up via the
second processor board

The TMDP is not capable to be woken up via the
second processor board

Overall time response for safety-critical
functionality should be less than 50ms
(fault detection 10ms; passivation 10 ms)

The failover simulations (see section 3.3.2) show
that with a fault duration > 250 ms the driving is
unsafe, and that the drivers starts perceiving the
performance degradation when the fault duration is
150 ms, thus 50 ms provides a safe margin

The restart of the system by an ignition-
cycle shall lead to system sanity check

A system restart by an ignition-cycle leads to a BIST
(Built-in self-test) (core check, walk pattern test, etc.)
to check the sanity of the system. In case of no error
was found, the original run-schedule shall be started

The connection between the different
platforms shall use redundant paths

The connection between the different platforms uses
a redundant communication architecture

Table 9: Validation of safety assumptions

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

5 Evaluation of Efficiency
The previous chapters showed the functional integrity of the SafeAdapt approach. However, this
does not indicate how the approach compares to others. To provide a baseline for comparison and
to show that the effort to use the SafeAdapt technology is manageable and can even reduce the
effort compared to other approaches, the evaluation methods described in D5.1 [1] are used to
calculate the measurable results (MR). Thereby, the efficiency of the SafeAdapt approach is
verified. First, this chapter details the properties of the system components used as basis for the
evaluation. Next, a brief update of the architecture overview compared to D5.1 is given. Finally,
these numbers are used to provide the measureable results.

5.1 Basics for the Evaluation

This section describes the properties of the components used to perform the evaluation of the
measurable results. Where possible, the specific properties of the components actually used in the
project are given. Otherwise, the properties of a component typically used for this purpose are
considered.

Core Node

For SafeAdapt it was planned from the beginning on to use the TMDP. This board is a typical
prototype platform to make a proof of concept or to evaluate architectures in a very early stage of a
project (“rapid prototyping”). To estimate SafeAdapt’s effect on vehicle architectures, the first step
is to perform a layout estimation and to find an applicable housing for such a kind of ECU. This
was done within the project and the result can be found in the following Figure 43 and Figure 44.
With this layout estimation the size of a TMDP can be assumed as 174.6 cm² plus the size for the
mounting shoes.

Figure 43: Dimensions of a “production ready” TMDP

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 44: Weight of a “production ready” TMDP

Body computer

For the estimation of a state of the art system, a typical body computer was taken into account
(see Figure 45). Due to the fact that the number of loads in the rear of the car is less than in the
front of the car, the rear body computer will look slightly different. The dimensions for this kind of
ECU are given by 23.6 * 15.6 cm = 368 cm2. The weight is 510 gr.

Figure 45: Typical front body computer (size: 26.2 * 18.9 cm = 495cm2, weight: 790gr.)

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Load box

For the SafeAdapt architecture the body computers will be changed to load boxes. The main
difference is the kind of processor that will be needed. It can be significantly smaller due to the fact
that the algorithms will run on the Core Nodes (CCC). The number of relays and solid state drivers
will stay the same. Therefore, the cost of a load box will be slightly lower than the cost for a body
computer. The differences in size and weight can be found in Table 10.

Wiring

To evaluate the difference in the wiring the following assumptions were made

I) Body computers are one by one replaced by load boxes. This means, there is no
difference in the power wiring from architecture to architecture.

II) Ethernet connection: The number of dedicated Ethernet connections will stay the
same in both types of architecture.

III) CAN connection: The number of dedicated CAN connections will stay the same in
both types of architecture.

5.2 Fail-Operational Architecture Overview

Deliverable D5.1 [1] provided already an overview of a hypothetical state-of-the-art reference
vehicle architecture. However, to provide a sound comparison, a minor update had to be
performed to introduce a CAN bus into the architecture. The updated block diagram of the
architecture without SafeAdapt technology is shown in Figure 46.

Figure 46: Updated block diagram of fail-operation architecture without SafeAdapt

With respect to the technology developed by SafeAdapt, an additional vehicle architecture diagram
is shown in Figure 47. The main difference between the two systems is that the “spare” ECU is
eliminated. The head unit is now in the SafeAdapt architecture the instance to take over this
responsibility. As this unit will always be part of a vehicle because of its HMI functionality, the
additional Core Node can be eliminated from the architecture.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Despite this, one problem with the current generation of head units is that they are not developed
to host application up to ASIL D and exactly this is needed for this SafeAdapt architecture.
However, the trend towards virtual clusters in the automotive industry will likely change this fact.
This means, that more and more clusters with analogue gauges will be replaced with TFT screens
in modern cars, and as such the head unit will become safety-critical because it will be part of the
safety strategy to inform the driver. Therefore, it is also expected that future head units will have at
least a safety island. With the very same mechanism of SafeAdapt it is of course possible to easily
extend such a system with an additional ECU. As more calculation power is available in the
system, more adaptation scenarios are possible, e.g., it would be possible to establish the
redundancy after an adaptation again.

For the comparison of the architectures it is sufficient to stay with a simple system consisting of
only two Core Nodes. An additional ECU will mainly increase the effort for configuration of such a
system and the software development, but not change the metric-relevant facts.

Figure 47: Block diagram of fail-operation architecture with SafeAdapt

With the updated information provided in the previous section, the properties of a fail-operational
architecture with and without SafeAdapt’s adaptive technology can be approximated as shown in
the following Table 10. All values are based on experience with comparable ECUs. The costs are
given as relative values because the exact values are confidential numbers of the partners. The
meaning of these numbers is, if the cost of one Core Node is rated as 100%, then the Body
computer price is around 70% of the cost of the Core Node cost.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

System properties with and (without) SafeAdapt technology

Cn 1 (CCC) Cn 2 (CCC)

Load Box /
Body comp.

Front

Load Box /
Body comp.

Rear
Head Unit Wiring

Cost
100%
(100%)

0%
(100%)

65%
(70%)

55%
(60%)

110%
(110%)

150%
(150%)

Weight
incl.

Housing,
brackets,
connectors

489g
(489g)

0g
(489g)

780g
(790g)

500g
(510g)

950g
(950g)

700g
(700g)

Size
175cm2

(175cm2)
0cm²

(175cm2)
490cm2

(495cm2)
363cm2

(368cm2)
355cm2

(355cm2)
n/a

Power
consumpti

on

25W
(25W)

0W
(25W)

19W
(20W)

14W
(15W)

40W
(40W)

n/a

Table 10: Properties of a system with SafeAdapt (bold) and state-of-the-art system (in brackets)

5.3 MR1: Optimised Energy Consumption

The adaptation mechanisms provided by the SafeAdapt approach can be used to increase the
energy efficiency, thereby, increasing the possible range of the vehicle. Section 3.3.3 describes
how Dynacar was used to simulate the New European Driving Cycles (NEDC) to estimate the car’s
energy consumption.

If the SAPC switches off auxiliary systems like the air conditioning and multimedia, these
subsystems will drop their power demands from 3.69 KW to 0.69 KW. For one NEDC cycle, this
implies a total difference of 1 KWh. However, when applying the torque reduction criterion (torque
degraded to 50% original), there is no significant effect on the vehicle’s energy efficiency
experienced, as it only adds 0.9 Km to the vehicle’s range. Therefore, this should be avoided and
there would not be any performance degradation in a slope or when overtaking. In consequence,
the only implication in a slope should be related to the change in the braking distance. However,
this it is not an issue in general because a slope sensor could be used to adjust the ideal braking
curves.

To increase the energy efficiency, the utilisation of the generator should be as large as possible to
reduce dissipation of kinetic energy in form of heat. Nevertheless, when shifting the brake balance,
the vehicle dynamics must remain safe. Therefore, the maximum brake forces that could be
applied in the frontal and rear axles of the vehicle were analysed. Assuming rigid body conditions
as a reference starting-point, the vehicle has been modelled with its dimensions, weight and CoG
(Centre of Gravity). The brake distribution curves obtained from the analysis in Matlab are shown
in Figure 48.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 48: Braking force limits applied on the frontal and rear axle of the vehicle

The value of 0.9 has been selected as a reference of the adherence coefficient and the braking
force distribution is obtained from previous measurements (respect to sum of the normal forces
applied to the vehicle). In the Figure 48, the ideal performance curve (“I curve”) assumes that the
frontal and rear axles lock-up at the same time, so the braking distance is minimal, i.e., normal
operation mode. The “f lines” and “r lines” plot the maximum brake forces for the frontal and rear
wheel lock-up respectively. From this plot, the brake distribution has been selected to perform with
a 0.9 adherence coefficient and 2 operation limits:

- Operation in the “I curve” (Shortest brake distance): Rear wheels 41% and frontal wheels
5% of the vehicle weight. In this operation limit, the Dynacar simulation result shows a
power consumption of 1.58 KWh and a total range of 127.3 Km (without auxiliary power
demand).

- Operation in the “r curve” (Maximum rear brake force to rear axle lock-up): Rear wheels
34% and frontal wheels 56% of the vehicle weight. In this operation limit, the Dynacar
simulation result shows a power consumption of 1.42 KWh and a total range of 141.6 Km
(without auxiliary power demand).

The selected optimal brake distribution strategy for range extension does not follow the typical
design criterion, where the frontal axle wheels could lock-up if road adherence falls from 0.9 to 0.5
(e.g., due to rain). Instead, if the adherence falls and the brake demand is maximal, the rear
wheels lock-up first and by consequence there is a stability loss issue. However, as adaptation is
available, the road adherence could be measured by a sensor or estimation method and adjust the
brake distribution accordingly in order to maintain safe dynamic performance. This could be an
interesting future development because current research showed that there is a considerable
range increase in the energy optimised mode.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

In sum, the following is concluded from the combined evaluation of improved energy efficiency:

Mode
Driver Train
per NEDC

(kWh)

Auxiliary
Systems per
NEDC (kWh)

∑ Power Consumption
per NEDC cycle of

10.39 km (kWh)

Range with 19.4
KWh battery (km)

Normal 1.58 1.23 2.814 71.6

Optimised Ø 1,519 Ø0,868 Ø 2.373 89.46

SOC > 35% 1.58 1.23 2.814 46.56

SOC <= 35% 1.406 0.23 1.636 42.9

Table 11: Vehicle energy efficiency with adaptation

With SafeAdapt the vehicle range could be extended to 89.46 km, hence, it increases by 17.9 Km
or 25%. These calculations assume that when the battery SOC is higher than 35% there is a high
use of air conditioning with a continuous power demand of 3 kW. In the case of low demand of
auxiliary power, the range extension is still significant, from 127 Km to 142 Km (+12%). It should
be noted that if using the SafeAdapt approach, the 25% increase in energy efficiency by adaptation
are achieved on top of the 21.6% reduction of energy consumption in the vehicle’s architecture.

5.4 MR2: Failures Handled by Adaptation

It is worth noting that current systems usually follow a fail-safe approach which means that in case
a failure is detected, the function is either degraded for a limited time (e.g., braking, electronic
power steering) or deactivated (e.g., adaptive cruise control, lane assist, airbag, air conditioning)
until the safe state is reached. This fail-safe state usually consists of a complete system shutdown,
as it is not possible to determine the valid output and, consequently, this strategy it is not
acceptable for autonomous driving.

Consequently, emerging autonomous driving technologies require fail-operational functionalities.
To do so, approaches like 2oo3 may be cost prohibitive in the automotive domain. SafeAdapt
provides a vehicle-level E/E solution for generic or function-unspecific fail-operational or graceful
degradation where the 1oo2D fault tolerance pattern is deployed. The introduced SAPC handles
failures in a generic way, being capable of providing fail-operational functionality for the most
critical vehicle functions such as Steer-by-Wire and Brake-by-Wire. Regarding functionalities with
less criticality, the adaptation is used to enhance the “mission time” of the car.

In fact, each function is considered as a composition of fault containment regions (FCR) as
described in D3.2 [7]. The information of which FCRs compose a certain function and which
system resources are required by it, needs to be provided as a configuration parameter [8]. This
scalable fault-tolerant E/E-architecture is based on TMDP and RACE platforms which ensure fail-
silent functionality at component level and rely on different means for performing diagnostics.
Different hardware and software safety mechanisms are embedded in each Core Node and a set
of fault containment regions are defined at different levels. These built-in HW/SW safety
mechanisms are able to either detect or correct faults related to each of the FCRs. If an error
cannot be corrected at ECU level, the SAPC is notified to handle the failure in an appropriate way.

More specifically, the SAPC is able to handle platform failures, memory failures, power supply
failures, sensor failures, and network failures and guarantees the fault tolerance of the
aforementioned critical functions in the vehicle E/E systems. Following list summarises the types of
fault regions that the SAPC concept can handle:

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

 Platform failure/Core Node: a random hardware failure that affects the whole Core Node.
The whole platform is considered as the containment region

 Memory failure: permanent memory cell failures or of memory banks, or memory area
failures are classified in general as memory failures.

 Timing failure: A failure on the internal watchdog, so that the outputs are no longer valid.

 SoC Bus System failure: Any problem detected on the SoC which is not recovered by CRC
appliance thus the SoC is untrusted

 Power supply failure: A permanent fault or a transient power supply faults, like a crank pulse
or other short power drops, that will make the Core Node reset.

 Application failure: there is a failure on the application due to unavailability of the input data
or a random hardware failure makes it impossible for the application to run in a normal
mode. Software design failures are not covered.

For further detailed information about the error handling strategy at system level, the following
Table 12 is introduced. Fault region determines where the failure occurs, detection mechanism
points out how it is supposed to be handled at component level, whereas fault containment
represents where to contain the effect. Finally, system reactions for each case are provided.

Fault Region Detection mechanism Fault Containment System reaction

Core Node failure
Loosely coupled

lockstep/ HW lockstep
System Failover

Memory failure
Recoverable by MPU ECU No need for failover

Not recoverable by MPU System Failover

Timing failure
SoC internal WD System Failover

ECU WD System Failover

SoC Bus System
failure

Recoverable by CRC ECU Depending on
performance level

comparison
Not

recoverable
System Yes

Power supply
failure

Fail-silent System Failover

Sensor failure

Input loss ECU Redundant path

Input
comparison

System Degrade application

Network failure
Input

comparison
ECU/System Redundant paths

Table 12: Error handling strategy at system level

In sum, any single failure within the system can be handled by the SafeAdapt approach, thus,
proving 100% safety from random hardware failures for functionalities with fail-operational
requirements.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

5.5 MR3: Cost Reduction

In Section 5.1 the cost of fail-operational systems with and without SafeAdapt’s technology was
already compared, coming to the conclusion that hardware costs will be reduced by 25% when
creating fail-operational systems with the proposed adaptation concepts.

Next to these cost savings, and additional study on improved cable routing was conducted to
determine if these costs could be reduced even more without endangering the safety of the
system. Here, the focus is on creating an architecture that ensures the E/E-architecture’s reliability
while reducing the electrical distribution system complexity, wiring harness length, circuit breakers,
connectors, ground points, shielding, fixing points, and mechanical wire protection.

For this study, the electric distribution function requirements together to legislative and
manufacturing requirements were considered. In comparison with state-of-the-art E/E-architecture
layouts for fail-operational systems (see Figure 49), the economic advantage of this enhanced
architecture (see Figure 50) is around 30%. These results were obtains through the concentration
of high voltage vehicle traction circuits in the rear engine compartment while the 12 Volt
electrical/electronic circuits and the SafeAdapt electronics were placed in the front luggage
compartment of the vehicle with the benefit of shorter wiring routing and better electromagnetic
compatibility management.

Figure 49: State-of-the-art fail-operational wiring harness layout

Figure 50: Reduced wiring harness layout

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

5.6 MR4: Reduced Certification Cost

As mentioned in the previous sections, one of the main challenges which SafeAdapt is facing is to
check the feasibility to certify the new reference architecture resulting from the project. This is
especially difficult as the outcomes from the project are prototypes and not market products. Thus,
it is out of the scope of the project to certify the solution. Estimations have been used from public
information in other domains such as aviation and from the automotive domain in order to identify
four perspectives to evaluate the possible implications:

 Reusable system architecture

 Tool qualification effort

 Safety goal verification effort

 Functional safety management effort

5.6.1 Reusable System Architecture Perspective

As a result of the project, the so-called SAPC has been developed as a system level safety
mechanism. The SAPC allows reuse in a safe manner without the need for a redundant ECU per
vehicle function and provides a generic fail-operational behaviour for safety-critical applications.

For estimations the following assumptions are considered:

 Assume the integration of only X-by-Wire related applications with an ASIL D associated

 Assume integration of related functions of equal size & complexity with 25% error margin

 The ASIL compliance cost overhead is considered as a median between the minimum and
maximum cost

According to [9] and [10] we can estimate the cost of the software development:

Basic SW Cost= 3.35 * HW Basic Cost

This figure is in the following only used as basic development cost as it does not take in to account
the overhead for ASIL compliance. In order to take into account the overheads for ASIL
compliance, the estimations from [11] have been chosen, where it is said that the overhead is
related to the experience of the team. For further estimations the mean of the overhead is utilised:

Cost overhead ASIL A ASIL B ASIL C ASIL D

Min 5% 10% 20% 40%
Max 20% 36% 60% 100%

Table 13: ASIL overhead

According to [12], the estimated cost of an X-by-Wire system is around 10000$. Based on this
number we can allocate the cost of the software and the hardware. Moreover, at PRICE Systems
company, they are focused on Predictive Analytics for Improved Cost Management [13]. They
have developed a model to estimate the cost of compliance with the avionics reference guidelines
and standards such as ARP-4754, DO-254, and DO-178b/c. They mention that the cost of the
hardware and software development is directly related with the complexity. That is also the exact

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

rationale behind SafeAdapt’s estimations where the cost of developing a piece of hardware or
software is multiplied by the level of complexity. To check the complexity of the hardware, the
same effect estimated by [9] about integrating additional functions in an IMA (Integrated Modular
Avionics architecture) are applied (see Figure 51 and Figure 52).

Figure 51: IMA enclosure + 1st application

Figure 52: Each additional application

Based on the previous estimations gathered from literature, the cost per vehicle function that
requires fail-operational behaviour has been estimated in Figure 53. Based on this result, it is
obvious that the SAPC architecture is not the most suitable solution for single functions. However,
the more functions are integrated (e.g., >3 functions), the more efficient it is.

0%

20%

40%

60%

80%

100%

120%

Federated Integrated

100%

60%

100%
110% Relative Hardware Cost

Relative Software
complexity

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Federated Integrated

100% 100%

25%

60%

Relative hardware cost

Relative software
complexity

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 53 Estimations of SAPC architecture cost per application included

5.6.2 Tool Qualification Effort

During the SafeAdapt project, a tool chain together with a methodology has been specified. This
tool chain provides modelling, design, and V&V support. It uses a model-based design flow, which
is complemented by pre-existing AUTOSAR tool-chains. Moreover, this approach enables early
verification and validation of non-functional requirements such as adaptability to support full
certification for safety-critical systems. Among others, the major results expected from its usage
are reduction of the development and testing costs and reduction in certification cost.

Current ISO 26262 methodologies and tool chains do not fully address the automotive functional
safety standard from a global perspective. Recent studies such as [14] identify a need for
reference tool chains and guidelines from which characteristics for tool qualifications can be
derived. Even if there are supporting software tools for lifecycle activities, i.e., item definition,
hazard and risk analysis, safety analysis, functional safety concept, or safety validation, there is no
unified framework addressing the entire lifecycle [15]. In other words, current tools and
methodologies cover only parts of the standard. This leads to error insertions due to badly
integrated tools [16].

SafeAdapt has been working in providing a reference tool chain in accordance with ISO 26262
together with a methodology specially designed for adaptive systems. On the scale of current
model-based safety analysis techniques [17], qualitative ones are often performed at the expense
of quantitative techniques. ISO 26262 standard highly recommends quantitative safety analysis for
high-level safety-critical applications. In this context, Siemens FMEDAexpress tool performs both
qualitative and quantitative safety analysis based on system and component models [18].

Moreover, adaptive systems have not been in the scope of ISO 26262 when the standard was
written and SafeAdapt methodology provides guidelines for ISO 26262 compliance when dealing
with adaptive systems such as the SAPC. The certification process might become even more
difficult and expensive, since adaptation is one way to mitigate the effect of failures and increase
the availability of a system. In this area of application, there is less experience related to the use of
ISO 26262. Furthermore, this standard provides no support for runtime hazards or an analysis of
adaptation scenarios. Current software architectures only consider static reconfiguration with a

 $-

 $20.000,00

 $40.000,00

 $60.000,00

 $80.000,00

 $100.000,00

 $120.000,00

 $140.000,00

 $160.000,00

 $180.000,00

Before

After

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

fixed set of modes that rely on static safety validation, e.g., as can be seen in [19] [20]. However, in
adaptive architectures the number of possible system states and transitions cannot be determined
in advance.

In order to enable certification of adaptive automotive systems, dependability and predictable
behaviour of safety-critical applications, such as X-by-Wire systems, must be guaranteed at
runtime. Therefore, the aim here is for a robust and comprehensive ISO 26262 methodology,
supporting a semi-automatic tool chain for adaptive systems reducing tool qualification and
certification costs. Since suitable methods and techniques are required to evaluate the
dependability of adaptive modular run-time control systems.

Tools for model-based development are especially adequate to reduce the effort requirements in
software development and verification tasks associated with standard compliance. Even more,
according to [21] “model-based development is estimated to bring a cost savings of approximately
15-20% on the software application verification (which represents the main cost driver of
certification).” Beyond all possible doubt, the cost of qualifying a tool is quite high. As stated in [21]
just the qualification and the development of an automatic code generator is estimated to be
approx. 2M€. It is foreseen that similar budgets will be necessary to actually qualify each tool.
These costs are related to the avionics domain, so they are not directly comparable to automotive
domain, where budgets are smaller. Nevertheless, according to [16] the cost of qualifying a tool
chain is less than qualifying each of the tools independently.

5.6.3 Safety Goal Verification Effort

As previously pointed out, the SAPC has been developed following a Safety Element out of
Context (SEooC) approach. This means that it has not been developed for a particular vehicle but
considering the different environments where the SAPC might be deployed. This SW SEooC can
run on different HW platforms, as it has for instance been deployed into the RACE and the TMDP
platforms. Furthermore, it can adapt to different application functions. Following this approach, the
SAPC development requires an ISO 26262 compliant SEooC process which is bases its
assumptions on an intended functionality, context, and use, including the assumptions on the
safety requirements. Later on, once the SEooC is integrated, all the corresponding assumptions
shall be verified.

Further, the SAPC includes a safety case (see Figure 42) as required by the standard which
summarises the safety argument supported by adequate evidence by means of modular
argumentation techniques. To some extent, the main goal of this safety case architecture is to
define the strategy for what the safety goals verification process should be. This helps to justify that
the system is acceptably safe and to enumerate which would be all the necessary evidences in
order to prove that the safety goals are correctly addressed.

The use of modular argumentation introduces some benefits to the development according to [22]:

1. Modular safety case development supports work division and work sharing

2. An explicit modular safety case structure helps tracking dependencies between arguments

3. An explicit modular safety case structure reduces the rediscovery and review effort (e.g.,
the effort associated with locating and tracking inter-safety case dependencies)

4. An explicit modular safety case structure limits the effects of change

5. Modular safety case development improves top-level planning of the safety

6. An explicit modular safety case structure promotes reuse within, and across, argument
application

7. An explicit modular safety case structure helps manage organisational and/or contractual
safety case boundaries.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

In [22] is also stated that the use of a modular approach in the safety case development process
would require an increase in up-front project safety case costs of around 25%. It has been
generally recognised that modular safety case development would result in increased initial costs
associated with establishing a modular structure and identifying interfaces and tool support would
need to be acquired. This cost has already been assumed in the SafeAdapt project. The SAPC
safety case already includes the specification of the interfaces in form of assumptions and public
claims or guarantees. [22] also mentions that a long-term cost benefit of 11-50% of current safety
case development costs is expected from using a modular approach based safety case
development.

5.6.4 Functional Safety Management Effort

Functional safety in smart cars such as the one targeted in SafeAdapt, needs to comply with ISO
26262. In Table 14 we have quantified the number of activities and work products resulted from the
performance of the mentioned activities.

ISO 26262 Parts No. Activities No. Work
products

Management 3 8
Concept 3 6
System 6 12

HW 6 11
SW 8 18

Production 0 0
Supporting 5 9

ASIL-oriented & safety analysis 4 5

Table 14: Number of activities and work products in terms of SafeAdapt (ISO 26262)

In SafeAdapt a semi-automatic tool chain was created together with a methodology which aims to
guide the user using the tools along the development lifecycle and according to ISO 26262 "Road
vehicles – Functional safety requirements. Figure 23 illustrates an overview of the tools used and
in [23] it has been specified how each of the tools under analysis supports the ISO 26262 activities.
Following the guidelines, the activities and work products which are supported by tools from the
SafeAdapt tool-chain are extrapolate below:

ISO 26262 Parts Activities Tool
supported

Work products supported by
tools

Management 3 6
Concept 3 6

System 4 8
HW 3 5
SW 4 5

Production 0 0
Supporting 2 2

ASIL-oriented & safety analysis 4 5

Table 15: Number of activities and work products supported by SafeAdapt tools (ISO 26262)

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Figure 54: Relation of activities and work products

5.7 MR5: Reduced Complexity

As the complexity of a system spans a variety of aspects, this measurable result is a composite
figure derived from the preceding evaluation results. Thus, the following Table 16 just summarises
all categories in which complexity can be reduced by applying SafeAdapt’s method for developing
adaptive and fail-operational systems.

Category Measurable Results & Description

Cabling
- 30% less cables

- Shared infrastructure (e.g., Ethernet) simplifies cable routing

Hardware Diversity
- Two different types of generic computing units and load boxes can
safely replace a multitude of function-specific ECUs

Certification
- SAPC as Safety-Element-out-of-Context (SEooC) may be only
certified one, reducing complexity of recertifying fail-operational logic
for every functionality

Software

- Reuse of generic fault handling (SAPC) prevent reimplementation of
failover logic in every application individually

- Design support and automation through toolchain reduces manual
effort and sources of human error

Table 16: Categories of complexity reduction

Not tool
support

34%Tool
support

66%

Activities

Not tool
support

46%
Tool

support
54%

Work products

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

5.8 MR6: Improved Redundancy Concept

As the current state-of-the-art system design can only attain fail-operational behaviour in a non-
generic manner through wasteful duplication of components, SafeAdapt’s adaptive approach for
managing redundancy in E/E-architectures poses as a promising alternative. This insight is further
underlined when analysing the measurable results of Section 5. In sum, SafeAdapt’s adaptive
technology allows substantial saving in cost, weight, size, and power consumption when compared
to current state-of-the-art approaches. The results are summarised in the diagram in the following
Figure 55:

Figure 55: Measurable improvements of SafeAdapt compared to state-of-the-art

It can directly be derived that in the evaluated architecture scenario introduced in Section 5.2 all
considered characteristics can be significantly reduced. Most reduction of 25% can be calculated
for cost, followed by a reduction of around 21,6% of power. Weight can be saved up to 15,6% and
size / volume about 11,8%. With these results the improvements of the SafeAdapt redundancy
concept can prominently be proven.

0,0

5,0

10,0

15,0

20,0

25,0

30,0

Cost Weight Size Power

Reduction by percent

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

6 Summary
The upcoming generations of vehicles will implement more and more novel functionalities
electronically. As many of these functionalities, such as Automated Driving or Steer-by-Wire, are
not allowed to fail when a single component fails, a fail-operational E/E-architecture is essential.
With state-of-the-art technology, such fail-operational behaviour is currently only attainable by
adding multiple special-purpose ECUs within a vehicle’s network to compensate for a potential
failure. Compared to this wasteful approach for fail-operational E/E-architectures, the adaptive
method proposed by SafeAdapt instead focuses on proving redundancy in a generic and resource
efficient manner.

This document has evaluated the feasibility of SafeAdapt’s adaptive technology and which benefits
it provides in comparison to state-of-the-art approaches. Foremost, multiple demonstrators were
utilised to successfully demonstrate the general applicability of the SafeAdapt results in the
automotive industry. Moreover, the evaluation determined that through applying SafeAdapt’s
adaptive concepts, it is possible to save 25% in hardware cost, 15.6% weight, 11.8% volume, and
improve energy efficiency of the E/E-architecture by 21.6% when compared with current methods
of designing fail-operational systems. When also applying adaptivity for the energy management,
another 25% could be saved with respect to the entire energy consumption of the vehicle. In
addition, 30% of cables can be saved when applying an advanced cable routing technique. Next to
these physical dimensions, additional benefits can be attained from SafeAdapt’s development
processes. Here, it is possible to reduce the complexity of the system design in the categories of
infrastructure layout, hardware diversity, software development, and safety certification through
applying advanced modelling techniques, automated system synthesis methods, and efficient
safety certification strategies. This rigorous and strongly automated process further improves the
safety of the system by eliminating potential sources of human error during the design.

Overall, SafeAdapt’s proposed methods provide the foundation for developing adaptive and fail-
operational systems in the next generation of e-vehicles and highly automated cars, as the
methods allow for an efficient and safe system design. In addition, all targeted goals indicated in
the Description of Work could be met. As the proposed methods substantially outperform state-of-
the-art approaches through the use of adaptivity and generic fault handling, an adoption of
SafeAdapt’s methods by the automotive industry is highly probable.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Bibliography

[1] SafeAdapt, "D5.1: Evaluation Methodology for the SafeAdapt Results".

[2] SafeAdapt, "D2.1: Definition of Use Cases and Scenarios for Safe Adaptation," 2014.

[3] K. Höfig, M. Zeller, and R. Heilmann, "ALFRED: A Methodology to Enable Component Fault
Trees for Layered Architectures," 41st Euromicro Conference on Software Engineering and
Advanced Applications, pp. 167-176, 2015.

[4] SafeAdapt, "D2.2: Requirements for the Run-time Control for Safe Adaptation and Supporting
Hardware Platforms," 2014.

[5] SafeAdapt, "D3.3: Specification of ISO 26262 safety goals for self-adaptation scenarios,"
2015.

[6] A. Ruiz, A. Melzi, and T. Kelly, "Systematic Application of ISO 26262 on a SEooC: Support by
Applying a Systematic Reuse Approach," Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition, pp. 393-396.

[7] SafeAdapt, "D3.2: Specification of Runtime Control for Enforcing Safe Adaptation," 2015.

[8] J. Frtunikj, V. Rupanov, M. Armbruster, A. Knoll, "Adaptive Error and Sensor Management for
Autonomous Vehicles: Model-based Approach and Run-time System," in Model-Based Safety
and Assessment, Munich, October 27-29, 2014.

[9] F. M. Dörenberg. (1997, Feb.) Integrated and Modular Systems for Commercial Aviation..

[10] C. R. Spitzer, Digital Avionics Handbook (Vols. Avionics: Elements, Software and Functions).
CRC Press, 2007.

[11] LinkedIn. [Online]. https://www.linkedin.com/groups/Cost-versus-ASIL-2308567.S.92692199

[12] J. Morris and P. Koopman, "Representing design tradeoffs in safety-critical systems,"
SIGSOFT Softw. Eng. Notes, pp. 1-5, 2005.

[13] pricesystems. (2015, May) http://www.pricesystems.com. [Online].
http://www.pricesystems.com/Portals/1/Blog/02-05-15-A/DO-178bc%20and%20DO-
254%20TP%20Modeling%20Guidance%20-%20DRAFT.pdf

[14] F. Asplund, M. Biehl, J. El-khoury, D. Frede, and M. Törngren, "Tool integration, from tool to
tool chain with ISO 26262,," in SAE 2012 Conference: World Congress and Exhibition, 2012.

[15] D. Makartetskiy, D. Pozza, and R. Sisto, "An Overview of Software-based Support Tools for
ISO 26262," in Innovative Information Technologies: Theory and Practice, Dresden, 2010.

[16] O. Slotosch, M. Wildmoser, J. Philipps, R. Jeschull, and R. Zalman, "ISO 26262 - Tool Chain
Analysis Reduces Tool Qualification Costs," Automotive, 2012.

[17] E. Armengaud, et al., "Integrated tool-chain for improving traceability during the development
of automotive systems," in Proceedings of the 2012 Embedded Real Time Software and
Systems Conference, 2012.

[18] K. Höfig, M. Zeller, and L. Grunske, "metaFMEA - A Framework for Reusable FMEAs,," in
Proceedings of the 4th International Symposium on Model Based Safety Assessment
(IMBSA)., 2014.

[19] P. Cuenot, C. Ainhauser, N. Adler, S. Otten, and F. Meurville, "Applying Model Based

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

Techniques for Early Safety Evaluation of an Automotive Architecture in Compliance with the
ISO26262 Standards," in Proceedings from ERTS 2014, Toulouse, 2014.

[20] P. Schleiss, M. Zeller, G. Weiss, and D. Eilers, "Safe Adaptive Software for Fully Electric
Vehicles," in Conference on Future Automotive Technology (CoFAT14), 2014.

[21] Rockwell Collins. (2009, Jan.) Eurocontrol. [Online].
https://www.eurocontrol.int/sites/default/files/content/documents/communications/29012009-
certification-cost-estimation-for-fci-platform.pdf.pdf

[22] T. Kelly and S. Bates, "The Costs, Benefits, and Risks Associated With Pattern-Based and
Modular Safety Case Development," in Proceedings of the UK MoD Equipment Safety
Assurance Symposium 2005, 2005.

[23] SafeAdapt Project, D4.2 Specification of the design process for safe adaptive embedded
systems and tool support for V&V adaptive system behaviour. 2014.

D5.3 Evaluation Results of the Specified Use Cases and Scenarios

List of Abbreviations
Abbreviation Definition

ACC Adaptive Cruise Control

AEB Automatic Emergency Brake

APP Application

ASIL Automotive Safety Integrity Level

BbW Brake-by-Wire

BMS Battery Management System

CCC Central Computing Core

CDD Complex Device Driver

CFT Component Fault Tree

Cn Core Node

DCC Duplex Control Computer

DiL Driver-in-the-Loop

EBC Emergency Brake Control

E/E Electric / Electronic

FEV Fully Electric Vehicles

GW Gateway

HiL Hardware-in-the-Loop

HW Hardware

I/O Input / Output

MiL Model-in-the-Loop

RACE Robust and reliable Automotive Computing Environment

RTE Runtime Environment

SAPC Safe Adaptation Platform Core

SbW Steer-by-Wire

SOC State Of Charge

SW Software

TMDP Trusted Multi Domain Platform

TTE Time-Triggered Ethernet

